Supporting Information

High-performance near-infrared light photovoltaic detector based on

multilayered PtSe₂/Ge heterojunction

Li Wang, Jing-Jing Li, Qi Fan, Zheng-Feng Huang, Ying-Chun Lu, Chao Xie, * Chun-Yan Wu, Lin-Bao Luo*

School of Electronic Science and Applied Physics and Anhui Provincial Key Laboratory of Advanced Materials and Devices, Hefei University of Technology, Hefei, Anhui 230009, China

Figure S1. Schematic illustration of the procedures for fabrication of PtSe₂/Ge heterojunction photodetector.

Figure S2. (a) Raman spectrum of the PtSe₂ film. The high resolution XPS spectra of (b) Se 3d and (c) Pt 4f. (d) Raman spectrum of the graphene film. The intensity ratio of I_{2D} : $I_G \approx 2.3$, along with the weak D-band scattering, signifies the high-quality single-layer characteristic of the graphene film.

Figure S3. (a) Schematic illustration of the *I-V* characteristics measurement for (a)

graphene/PtSe₂/graphene hybrid, and (c) In/Ga-Ge-In/Ga hybrid. *I-V* curves of (b) graphene/PtSe₂/graphene hybrid and (d) In/Ga-Ge-In/Ga hybrid, indicating the formation of good Ohmic contacts.

Figure S4. (a) *I-V* curves of PtSe₂/Ge heterojunction with different PtSe₂ thicknesses in dark and under 1550 nm NIR illumination. (b) *I-V* curves of Au/PtSe₂/Au structures with different PtSe₂ thicknesses, indicating that the sheet resistance of PtSe₂ layers decreases with increase in their thickness.

Figure S5. Dark currents of the PtSe2/Ge heterojunction photodetector under different NIR illuminations: Dark 1, 2, 3, 4 denote dark current under 1300, 1550, 1650 and 2200 nm illuminations, respectively.

Figure S6. Photoresponse of the NIR detector under pulsed 1550 nm illumination with a frequency of 100 KHz.