Electronic Supplementary Information

Morphology Control towards Greener, Non-halogenated Solvent System Processed

CH₃NH₃PbI₃ Film for High Performance Perovskite Solar Cells

Wan-Yi Tan, Peng-Peng Cheng, Yong-Wen Zhang, Jia-Ming Liang, Xudong Chen, Yidong Liu,*

and Yong Min*

Figure S1 Topographic atomic force microscopy (AFM) images (5 μ m × 5 μ m) of (a) the p-perovskite film, $R_{\rm rms} = 1.15$ nm, and (b) m-perovskite film, $R_{\rm rms} = 2.04$ nm. Both of the thin-films were deposited on ITO/NiO_x substrates.

Figure S2 SEM images of (a) the p-perovskite film and (b) m-perovskite film. Both of the thin-films were deposited on ITO/NiO_x substrates and covered with $PC_{61}BM$ layer.

Figure S3 XPS depth profiling of I component in m-perovskite film.

Figure S4 Normalized transient PL decay profiles of the p-perovskite film and m-perovskite film measured at 780 nm, from the air side.

Figure S5 Stabilized power output of m-PSC, obtained at a maximum power point (MPP).

Figure S6 Current density (*J*)–voltage (*V*) characteristics of the reverse swept $MAPbI_3 PSC$ with the perovskite layer using EA/MACl (3 mg/mL) as the anti-solvent.

Figure S7 Current density (J)–voltage (V) characteristics of the reverse swept MAPbI₃ PSC with the perovskite layer only modified by MACl.

Figure S8 Stability of PSCs based on p-perovskite and m-perovskite films, which stored in ambient air at ~53% humidity in the dark.

Figure S9 Stability of PSCs based on p-perovskite and m-perovskite films, which thermally annealed at 85 °C.

 Table S1 Comparison of the PCE of NMP-processed PSCs reported in this work and in the literatures.

Precursor solvent	Anti-solvent	Device configuration	Thermal annealing condition	PCE	Ref.
NMP	Dipping in ether for 30 min	FTO/c-TiO ₂ /TiO ₂ /MAPbI ₃ /Al ₂ O ₃ /Carbon	Room-temperature annealing for over 100 h	12.3%	1
NMP	None	FTO/c-TiO ₂ /TiO ₂ /MAPbI ₃ / Al ₂ O ₃ /Carbon	Slow crystallization for 120 h	15.0%	2
GBL:DMSO :NMP (2:2:1)	СВ	ITO/PEDOT:PSS/MAPbI ₃ / PCBM/LiF/Al	Thermally annealed at 85 °C for 1 h	12.3%	3
DMAc/NMP (4:1)	Toluene	FTO/compact TiO2/mesoporous TiO2/MAPbI3/spiro-OMeTAD/Au	Annealing free	17.09%	4
DMF/DMSO/ NMP (4:1:0.25)	СВ	FTO/TiO ₂ / Cs _{0.05} (MA _{0.17} FA _{0.83}) _{0.95} Pb(I _{0.83} Br _{0.17}) ₃ / spiro-OMe-TAD/Au	Thermally annealed at 100 °C for 1 h	19.61%	5
DMAc/NMP (5:1)	Toluene	FTO/TiO ₂ /MAPbI ₃ /spiro-OMeTAD/Ag	Thermally annealed at 105 °C for 10 min	15.25%	6

Table S2 Time resolved photoluminescence characterization of the p-perovskite film andm-perovskite film on ITO/NiOx substrates.

Active layer	τ_1 (ns)	Fraction 1	τ_2 (ns)	Fraction 2
p-Perovskite	0.7	61.79%	11.9	38.21%
m-Perovskite	0.55	56.52%	25.5	43.48%

Table S3 The photovoltaic performance of the reverse swept $MAPbI_3 PSCs$ with the perovskite layer using different anti-solvents.

Ant: columnt	PCE	$J_{ m SC}$	V _{oc}	FF	R _s	R _{sh}
Anti-solvent	(%)	(mA cm ⁻²)	(V)	(%)	$(\Omega \text{ cm}^2)$	$(k\Omega \ cm^2)$
EA/MACl (3 mg/mL)	13.16	18.65	1.06	66.55	4.44	1.48
MACl (1 mg/mL)	11.71	15.70	1.07	69.66	4.21	1.57

Reference

- 1 C. Y. Chan, Y. Y. Wang, G. W. Wu, E. W. G. Diau, J. Mater. Chem. A, 2016, 4, 3872–3878.
- C. M. Tsai, G. W. Wu, S. Narra, H. M. Chang, N. Mohanta, H. P. Wu, C. L. Wang, E. W. G. Diau, J. Mater. Chem. A, 2017, 5, 739–747.
- 3 L. Xie, H. Hwang, M. Kim, K. Kim, *Phys. Chem. Chem. Phys.*, 2017, **19**, 1143–1150.
- X. Fang, Y. H. Wu, Y. T. Lu, Y. Sun, S. Zhang, J. Zhang, W. H. Zhang, N. Y. Yuan, J. N. Ding, J.
 Mater. Chem. C, 2017, 5, 842–847.
- 5 T. Y. Wu, J. H. Wu, Y. G. Tu, X. He, Z. Lan, M. L. Huang, J. M. Lin, J. Power Sources, 2017, 365, 1–6.
- 6 M. H. Lv, W. Lv, X. Fang, P. Sun, B. C. Lin, S. Zhang, *RSC Adv.*, 2016, 6, 35044–35050.