Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic supplementary information

Power generation from the Cu₂₆Nb₂Ge₆S₃₂-based single thermoelectric element with Au diffusion barrier

Raju Chetty^a, Yuta Kikuchi^a, Yohan Bouyrie^a, Priyanka Jood^a, Atsushi Yamamoto^a,

Koichiro Suekuni^b, and Michihiro Ohta^{a*}

^a Research Institute for Energy Conservation, National Institute of Advanced Industrial Science

and Technology (AIST), Tsukuba, Ibaraki 305-8568, Japan

^b Department of Applied Science for Electronics and Materials, Interdisciplinary Graduate

School of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan

*Corresponding Author: Michihiro Ohta

Email: ohta.michihiro@aist.go.jp

Preparation of Cu₂₆Nb₂Ge₆S₃₂ thermoelectric elements with different metal junctions.

Powder X-ray diffraction patterns of simulated, as-prepared $Cu_{26}Nb_2Ge_6S_{32}$, hot-pressed $Cu_{26}Nb_2Ge_6S_{32}$ without diffusion barrier, and hot-pressed $Cu_{26}Nb_2Ge_6S_{32}$ with Au over the range of 10° – 100° .

(a) Photograph of sample mounted and (b) a schematic diagram for the electrical resistance (R)

measurement setup.

Fourth order polynomial fittings of temperature dependent electrical resistivity (ρ), Seebeck coefficient (*S*), total thermal conductivity (κ_{total}) and thermoelectric figure of merit (*ZT*).

(a) Hot-pressed sample of Ti foil/Cu₂₆Nb₂Ge₆S₃₂/Ti foil after hot pressing at 973 K. Ti foil was peeled off.
(b) hot-pressed sample of Ti powder/Cu₂₆Nb₂Ge₆S₃₂/Ti powder after hot pressing at 973 K.
(c) The Ti layer peeled off during the dicing.

Figure S6

(a) Hot-pressed sample of Pt foil/Cu₂₆Nb₂Ge₆S₃₂/Pt foil after hot pressing at 973 K. (b) The Pt

layer was peeled off during the dicing.

- (a) Hot-pressed sample of Ni powder/Cu₂₆Nb₂Ge₆S₃₂/Ni powder sample after hot pressing at 923
- K. (b) Hot pressed elements of Ni powder/Cu₂₆Nb₂Ge₆S₃₂/Ni powder after dicing.

Figure S8

(a) Hot-pressed sample of Au foil/Cu₂₆Nb₂Ge₆S₃₂/Au foil after hot pressing at 973 K.(b) Hot

pressed elements of Au foil/Cu $_{26}Nb_2Ge_6S_{32}/Au$ foil after the dicing.

(a) Scanning electron microscopy backscattered electron (SEM-BSE) image of Cu/Ag/Au/Cu₂₆Nb₂Ge₆S₃₂ interface in hot side, and (c) and (d) the corresponding X-ray maps of Cu, Ag, Au and Cu₂₆Nb₂Ge₆S₃₂. Note that the energy of Nb $L\alpha_1 = 2.169$ keV is close to the energy of Au $M\alpha_1 = 2.123$ keV.

(a) Scanning electron microscopy backscattered electron (SEM-BSE) image of $Cu_{26}Nb_2Ge_6S_{32}/Au/Sn_{60}Pb_{40}/Cu$ interface in cold side, and (c) and (d) the corresponding X-ray maps of Au, $Cu_{26}Nb_2Ge_6S_{32}$, Sn, Pb and Cu. Note that the energy of S $K\alpha_1 = 2.309$ keV is close to the energy of Pb $M\alpha_1 = 2.342$ keV.

Scanning electron microscopy backscattered electron (SEM-BSE) image of $Au/Cu_{26}Nb_2Ge_6S_{32}$ interface at the hot side of thermoelectric element (a) before and (b) after the temperature gradient treatment, respectively.