Supporting Information

High Performance Perovskite CH₃NH₃PbCl₃ Single Crystal Photodetector: Benefiting from Evolutionary Preparation Process

Zhishuai Yuan^a, Wei Huang^b, Shoutao Ma^a, Gang Ouyang^c, Wei Hu^{*b}, Wei Zhang ^{*a}

a College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, China. E-mail: ruoqiwei@sina.com

b School of Physics and Electronics, Hunan University, Changsha 410082, China. E-mail: huwei@hnu.edu.cn

c Key Laboratory of Low Dimmensional Quantum Structures and Quantum Control of Ministry of Education, Hunan Normal University, Changsha 410081, China. E-mail: gangouy@hunnu.edu.cn

Figure S1. TGA-DSC curves of CH₃NH₃PbCl₃ single crystal

In order to learn about the thermal stability of CH₃NH₃PbCl₃ single crystal, differential scanning calorimetry/thermogravimetric analysis (DSC/TGA) was employed, which was carried out under nitrogen flow from room temperature to 1000°C. (Figure S1)

Figure S2. Raman spectrum of CH₃NH₃PbCl₃ single crystal

As shown in Figure S2, the Raman spectrum was carried out under resonant conditions whose excitation wavelength was 633 nm. A series of intense Raman bands were exhibited precisely. Notably, two intense vibrational mode center bands located around 490 and 986 cm⁻¹, which can attribute to the orientation motion of organic cations(MA⁺), among them, the 490cm⁻¹ peak was caused by N-H bending, while the peak of 986 cm⁻¹ was attributed to C-N bending. As for another two bands, one was located around 1495cm⁻¹, and another was around 1606cm⁻¹. In fact, these two peaks were caused by different factors. The bonding of C-H bond can account for the 1495cm⁻¹ peak, nevertheless, the 1606cm⁻¹peak can attribute to the stretching of C-N bond.

Figure S3. XPS spectrum of CH₃NH₃PbCl₃ single crystal

Temperature(°C)	Quantity(num)	Average size(mm ²)
60	0	0
70	2	22.75
80	21	6.21
100	41	2.66
120	94	1.09

Table S1. The quantity and average size of CH₃NH₃PbCl₃ single crystals preparedunder different temperatures.

Table S2. The performance comparison of similar perovskitephotodetectorsemploying single crystals, thin films, and nanocrystals reported in the literatures.

References	Materials	Responsivity	Response time (rise/fall time)	On/Off ratio
1	CH ₃ NH ₃ PbCl ₃ (Single Crystal)	46.9mA/W @-15V (365nm)	24ms/62ms	1.1×10 ³
2	CH₃NH₃PbCl₃ (Single Crystal)	0.60mA/W@10V (405nm)		111
3	CH₃NH₃PbCl₃ (thin film)	7.56A/W@4V (360nm)	170µs/220µs	64
4	CH₃NH₃PbCl₃ (thin film)	0.047A/W@0V (398nm)		9840
5	CH ₃ NH ₃ PbCl ₃ (thin film)	297µA/W@10V (367±2nm)		
6	$CH3NH3PbI_{3-}$ _x Cl _x (thin film)	620A/W@-0.7V (550nm)	~100ms	
7	$CH3NH3PbI_{3-}$ _x Cl _x (thin film)	7.85A/W@10V (254nm)	0.2µs/0.7µs	2235
8	CsPbCl₃(nanocrys tal)	1.89A/W@5V (365nm)	41ms/43ms	10 ³
9	CsPbCl₃(nanocrys tal)	0.9A/W@5V (365nm)	47ms/52ms	1.9×10 ³
Ours	CH ₃ NH ₃ PbCl ₃ (Single Crystal)	7.97A/W@1V (350nm)	1.27ms/1.84 ms	10 ³

References

1 G. Maculan, A. D. Sheikh, A. L. Abdelhady, M. I. Saidaminov, M. A. Haque, M. Banavoth, E. Alarousu, O. F. Mohammed, T. Wu and O. M. Bakr, *J. Phys. Chem. Lett.*, 2015, **6**, 3781.

2 X. H. Cheng, L. Jing, Y. Zhao, S. J. Du, J. X. Ding and T. L. Zhou, *J. Mater. Chem. C.*, 2018, **6**, 1579.

3 W. Z. Wang, H. T. Xu, J. Cai, J. B. Zhu, C. W. Ni, F. Hong, Z. B. Fang, F. Z. Xu, S. W. Cui, R. Xu, L. J. Wang, F. Xu and J. Huang, *Opt. Express.*, 2016, **8**, 8411.

4 E. Zheng, B. Yuh, G. A. Tosado and Q. M. Yu, J. Mater. Chem. C., 2017, 5, 3796.

5 L. Xiao, J. C. Luan, X. L. Yu, B. Zhang, S. Y. Dai and J. X. Yao, *Mater. Lett.*, 2018, **220**, 108.

6 H. W. Chen, N. Sakai, A. K. Jena, Y. Sanehira, M. Ikegami, K. C. Ho and T. Miyasaka, *J. Phys. Chem. Lett.*, 2015, **6**, 1773.

7 Y. L. Guo, C. Liu, H. Tanaka and E. Nakamura, J. Phys. Chem. Lett., 2015, 6, 535.

8 J. R. Zhang, Q. Wang, X. S. Zhang, J. X. Jiang, Z. F. Gao, Z. W. Jin and S. Z. Liu, *RSC. Adv.*, 2017, **7**, 36722.

9 D. Y. Li, D. L. Zhou, X. Chen, G. C. Pan, X. Y. Zhou, N. Ding and H. W. Song, *Adv. Funct. Mater.*, 2018, **28**, 1804429.