Ag doping induced abnormal lattice thermal conductivity in Cu₂Se

Weidi Liu, ^a Xiaolei Shi, ^a Min Hong, ^{b, a,}Lei Yang, ^c Raza Moshwan, ^a Zhi-Gang Chen, ^{b, a, *} Jin Zou^{a,d, *}

^a Materials Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia.

^b Centre for Future Materials, University of Southern Queensland, Springfield, Queensland 4300,

Australia.

^c School of Materials Science and Engineering, Sichuan University, Chengdu 610065, China

^d Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, Queensland

4072, Australia.

* Corresponding author. Email: <u>zhigang.chen@usq.edu.au</u>; <u>j.zou@uq.edu.au</u>;

Keywords: Thermoelectric performance, Cu₂Se, Ag dopants, Carrier transport properties.

1. Rietveld refinement calculated Cu₂O content and its influence on thermoelectric performance of Cu₂Se

Figure S1a and b show the experimental XRD patterns in comparison with the Rietveld refinement calculated ones of as-sintered (Cu_{1-x}Ag_x)₂Se pellets and the calculated the Cu₂O ratios. The R_{wp} values for (Cu_{1-x}Ag_x)₂Se with x=0, 0.005 and 0.01 are 7.9, 6.8 and 7.2 %, respectively. As can be seen, with increasing the Ag-doping level, the Cu₂O content increases up to 3.5 *at.* %. This fraction is lower than the critical point of ~7 *at.* %.[1] Below this point, Cu₂O has minor influence on thermoelectric performance of as-prepared (Cu_{1-x}Ag_x)₂Se.[1]

Figure S1. (a) Experimental and Rietveld refinement calculated XRD patterns and (b) Rietveld refinement calculated phase content of as-prepared Cu₂Se, (Cu_{0.995}Ag_{0.005})₂Se and (Cu_{0.99}Ag_{0.01})₂Se pellets.

2. Temperature-dependent specific heat of as-prepared (Cu_{1-x}Ag_x)₂Se pellets

The temperature-dependent specific heat (C_p) of as-prepared $(Cu_{1-x}Ag_x)_2$ Se pellets are shown in Figure S2 (refer to Figure R2). The peaks at ~400 K of all samples clearly revealed the well-known phase transition from α -Cu₂Se to β -Cu₂Se at ~400 K.[2, 3] Here, we are mainly focusing on thermoelectric performance of $(Cu_{1-x}Ag_x)_2$ Se pellets after the phase transition where the temperature is higher than 423 K.

Figure S2. Temperature (*T*)-dependent specific heat (C_p) of as-prepared (Cu_{1-x}Ag_x)₂Se pellets.

Reference

[1] A. S. Ivanov, Y. E. Kalinin, V. V. Bavykin, A. S. Shuvayev, Inorg. Mater. Appl. Res. 8 (2017) 50.

[2] A. A. Olvera, N. A. Moroz, P. Sahoo, P. Ren, T. P. Bailey, A. A. Page, C. Uher, P. F. P. Poudeu, Energy Environ. Sci. 10 (2017) 1668.

[3] L. Yang, Z. G. Chen, G. Han, M. Hong, J. Zou, Acta Mater. 113 (2016) 140.