Electronic Supplementary Information

Laminar MAPbBr₃/MAPbBr_{3-x}l_x graded heterojunction single crystal for enhancing charge extraction and optoelectronic performance

Wen-Guang Li,[‡] Xu-Dong Wang,[‡] Jin-Feng Liao, Ze-Feng Wei, Yang-Fan Xu, Hong-Yan Chen and Dai-Bin Kuang*

MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510275, P. R. China

*Corresponding author.

E-mail: kuangdb@mail.sysu.edu.cn.

‡ These authors contributed equally to this work.

Fig. S1 Tauc plots of the laminar MAPbBr₃ SC and MAPbBr₃/MAPbBr_{3-x}l_x GHSC.

Fig. S2 (a) The surface and (b) cross-sectional SEM images of the laminar MAPbBr₃ SC.

Fig. S3 The cross-sectional EDX linescan of the laminar $MAPbBr_3/MAPbBr_{3-x}l_x$ GHSC.

Fig. S4 (a) XPS spectra of the laminar MAPbBr₃ SC and MAPbBr₃/MAPbBr_{3-x}I_x GHSC, (b) Br 3d peak and (c) I 3d peak.

Fig. S5 High-resolution X-ray diffraction analysis on laminar MAPbBr₃ SC and MAPbBr₃/MAPbBr_{3-x}l_x GHSC: rocking curve of (a) the 14.97° peak of MAPbBr₃ and (b) the 14.26° peak of MAPbBr_{3-x}l_x.

Fig. S6 The PL spectrum of the laminar MAPbBr₃/MAPbBr_{3-x}l_x GHSC under 580 nm excitation from the glass side.

Fig. S7 (a) AFM topography and the corresponding KPFM CPD map across the crosssection of the laminar MAPbBr₃ SC on TiO_2/FTO substrate. (b) Schematic of crosssectional KPFM measurement setup in short-circuit mode. 100 nm gold film was deposited on the single crystal surface and the FTO substrate by sputtering to both make well grounding. (c) CPD depth profile averaged from (a) along the lateral direction of the cross-section.

Fig. S8 (a) The relative energy band position between the pure MAPbBr₃ and the iodinerich MAPbBr_{3-x}I_x component deduced from the KPFM result and the previous reports. (b) The proposed band alignment of the MAPbBr₃/MAPbBr_{3-x}I_x GHSC.

The KPFM result of the MAPbBr₃/MAPbBr_{3-x}l_x GHSC reveals that the iodine-rich MAPbBr_{3-x}l_x region possesses about 0.2 eV larger work function than the pure MAPbBr₃ region. Since the conduction band minimum (CBM) of MAPbI₃ is approximately 0.1 eV lower than that of MAPbBr₃ according to the literatures,^[1,2] the up-shift of vacuum level may gradually bend up the conduction band in the halogen gradient MAPbBr_{3-x}l_x region in the range of ~0.1 eV when the Fermi levels are aligned in an equilibrium condition.

Fig. S9 PL spectra of the laminar MAPbBr₃/MAPbBr_{3-x}l_x GHSC (excited from PVK side) before and after light soaking (100 mW cm⁻² from white LED) for 30 min.

Fig. S10 Linear dynamic range of the photodetectors based on the laminar MAPbBr₃ SC and the MAPbBr₃/MAPbBr_{3-x}l_x GHSC at 0 V bias. The corresponding responsivity are shown in the figure with Y axis on the right.

Fig. S11 The photocurrent evolution of the MAPbBr₃/MAPbBr_{3-x}l_x GHSC photodetector at 0 V bias under continuous white LED illumination of 1.45 mW cm⁻².

Fig. S12 The TPC (a, b) and TPV (c, d) curves of the MAPbBr₃ SC and MAPbBr₃/MAPbBr₃₋ $_{x}I_{x}$ GHSC devices

Table S1 The detailed biexponential fitting parameters from the TRPL spectra in Fig. 2cand d.

Excitation direction	Sample	τ ₁ [ns]	%	τ ₂ [ns]	%	τ _{total} [ns]
PVK side	MAPbBr ₃	14.0	17.4	139.2	82.6	117.4
PVK side	MAPbBr ₃ /MAPbBr _{3-x} l _x	5.7	12.1	229.0	87.9	201.9
Glass side	MAPbBr ₃	8.8	35.4	31.2	64.6	23.3
Glass side	MAPbBr ₃ /MAPbBr _{3-x} l _x	0.5	21.7	5.5	78.3	4.4

 Table S2
 Summary of the performance of single crystal photodetectors.

Sample	Thickness	EQE	Responsivity	Response	3dB	Reference
	[µm]	[%]	[A/W]	time	bandwidth	
				[µs]	[Hz]	
MAPbBr ₃ SC	11	25(0 V);	0.1 (0 V, 2.4	0.67	1.3×10 ⁶	This work
		120(-2V)	mW cm⁻²)	0.07		
MAPbBr ₃ /MAPbBr ₃	11	40(0 V);	0.27 (0 V, 2.4	0.50	3.0×10 ⁶	This work
_{-x} I _x GHSC	11	170(-2V)	mW cm⁻²)	0.56		
MAPbBr ₃ SC	100	20(1)/)	-	120	1.0×10 ⁵	Adv. Mater.,
		20(-1 V)				2017, 29 ,
		80(-2 V)				1602639.
MAPbBr ₃ SC	0.38	-	-	930	1.4×10 ³	Adv. Mater.,
						2018, 30 ,
						1704333.
MAPbBr ₃ SC	1000	-	-	216	-	Nat. Photonics,
						2016, 10 , 333.

References

- [1] X. Zhou, W. Ye, X. Li, W. Zheng, R. Lin, F. Huang and D. Zhong, *Appl. Phys. Lett.* 2016, **109**, 233906.
- [2] I. Karimata, Y. Kobori and T. Tachikawa, J. Phys. Chem. Lett. 2017, 8, 1724-1728.