Supporting Information:

Highly ordered 3D-silver nanoring arrays (3D-AgNRAs) for refractometric sensing

Xueyao Liu,^a Wendong Liu^b and Bai Yang^{*a}

^{*a*} State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China.

*E-mail: byangchem@jlu.edu.cn; Fax: +86-431-85193423; Tel: +86-431-851684789

^b Max Planck Institute for Polymer Research, Ackermannweg 10, D-55128 Mainz, Rheinland-Pfalz, Germany

Figure S1. (a) Large area SEM image of 3D-AgNRAs; (b) Centimeter-size optical

image of 3D-AgNRAs.

Figure S2. FDTD simulated reflectance spectra of 3D-AgNRAs with P=1 μ m, D₁=530 nm, D₂=870 nm, and various H₁ (H₂-H₁=100 nm).

Figure S3. The reflectance main dip position's cross-section electromagnetic field distribution for 3D-AgNRAs with 50 (a), 100 (b), 200 (c), and 300 nm (d) $H_{1.}$

Figure S4. FDTD simulated reflectance spectra of 3D-AgNRAs with P=1 μ m, H₁=200 nm, H₂=300 nm, and D₂=830 nm, but varied D₁ from 200 nm to 500 nm

Figure S5. The reflectance main dip position's cross-section electromagnetic field distribution for 3D-AgNRAs with 200 (a), 300 (b), 400 (c), and 500 nm (d) D₁.

Figure S6. FDTD simulated reflectance spectra of 3D-AgNRAs with P=1 μ m, H₁=200 nm, H₂=300 nm, T=250 nm, but varied D₂ from 660 nm to 840 nm

Figure S7. The reflectance main dip position's cross-section electromagnetic field distribution for 3D-AgNRAs with 660 (a), 730 (b), 750 (c), and 840 nm (d) D₂.

Figure S8. The temporal dependence of particle diameter during etching. The initial etched PS nanosphere mask taken as example was 780 nm in diameter.