Supporting Information

Classification of MAOX Phases and Semiconductor Screening for Next-Generation Energy Conversion Ceramic Materials

Zhenyu Wang,^{a,†} Xin Chen, ^{a,†,*} and Chunming Niu^{a,*}

Center of Nanomaterials for Renewable Energy (CNRE), State Key Lab of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, 99 Yanxiang Road, Xi'an 710054, China.*E-mail: <u>xin.chen.nj@xjtu.edu.cn</u>; <u>cniu@xjtu.edu.cn</u>; <u>†Author Contributions Zhenyu Wang, Xin Chen: Equal author contributions.</u>

Figure S1. Band structures of the oxynitride and sulnitride MAOX: (a) Sc_2CaO_2N , (b) Sc_2CaS_2N , (c) Y_2CaO_2N , (d) Y_2CaS_2N , (e) La_2CaO_2N , (f) La_2CaS_2N , (g) Cr_2CaO_2N , (h) Cr_2CaS_2N , (i) Mo_2CaO_2N and (j) Mo_2CaS_2N . The black dash line indicates the Fermi level.

Figure S2. Bandgap distribution of MAOX semiconductor sorted by M, where the shadow indicates the distribution range, where A=Be, Mg, Ca, Sr, Ba, Cu, Zn, Cd or Hg, and O=S or O.

Figure S3. The band structures and the projected density of state (PDOS) of the nine Sc_2AO_2C : (a) Sc_2BeO_2C , (b) Sc_2MgO_2C , (c) Sc_2CaO_2C , (d) Sc_2SrO_2C , (e) Sc_2BaO_2C , (f) Sc_2CuO_2C , (g) Sc_2ZnO_2C , (h) Sc_2CdO_2C and (i) Sc_2HgO_2C . For the semiconductors, the

valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S4. The band structures and the projected density of state (PDOS) of the nine Sc_2AS_2C : (a) Sc_2BeS_2C , (b) Sc_2MgS_2C , (c) Sc_2CaS_2C , (d) Sc_2SrS_2C , (e) Sc_2BaS_2C , (f) Sc_2CuS_2C , (g) Sc_2ZnS_2C , (h) Sc_2CdS_2C and (i) Sc_2HgS_2C . For the semiconductors, the valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S5. The band structures and the projected density of state (PDOS) of the nine Y_2AO_2C : (a) Y_2BeO_2C , (b) Y_2MgO_2C , (c) Y_2CaO_2C , (d) Y_2SrO_2C , (e) Y_2BaO_2C , (f) Y_2CuO_2C , (g) Y_2ZnO_2C , (h) Y_2CdO_2C and (i) Y_2HgO_2C . For the semiconductors, the valence band

maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S6. The band structures and the projected density of state (PDOS) of the nine Y_2AS_2C : (a) Y_2BeS_2C , (b) Y_2MgS_2C , (c) Y_2CaS_2C , (d) Y_2SrS_2C , (e) Y_2BaS_2C , (f) Y_2CuS_2C , (g) Y_2ZnS_2C , (h) Y_2CdS_2C and (i) Y_2HgS_2C . For the semiconductors, the valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S7. The band structures and the projected density of state (PDOS) of the nine LaAO₂C: (a) La₂BeO₂C, (b) La₂MgO₂C, (c) La₂CaO₂C, (d) La₂SrO₂C, (e) La₂BaO₂C, (f) La₂CuO₂C, (g) La₂ZnO₂C, (h) La₂CdO₂C and (i) La₂HgO₂C. For the semiconductors, the valence band

maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S8. The band structures and the projected density of state (PDOS) of the nine LaAS₂C: (a) La₂BeS₂C, (b) La₂MgS₂C, (c) La₂CaS₂C, (d) La₂SrS₂C, (e) La₂BaS₂C, (f) La₂CuS₂C, (g) La₂ZnS₂C, (h) La₂CdS₂C and (i) La₂HgS₂C. For the semiconductors, the valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S9. The band structures and the projected density of state (PDOS) of the nine Cr_2AO_2C : (a) Cr_2BeO_2C , (b) Cr_2MgO_2C , (c) Cr_2CaO_2C , (d) Cr_2SrO_2C , (e) Cr_2BaO_2C , (f) Cr_2CuO_2C , (g) Cr_2ZnO_2C , (h) Cr_2CdO_2C and (i) Cr_2HgO_2C . For the semiconductors, the

valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S10. The band structures and the projected density of state (PDOS) of the nine Cr₂AS₂C: (a) Cr₂BeS₂C, (b) Cr₂MgS₂C, (c) Cr₂CaS₂C, (d) Cr₂SrS₂C, (e) Cr₂BaS₂C, (f)

 Cr_2CuS_2C , (g) Cr_2ZnS_2C , (h) Cr_2CdS_2C and (i) Cr_2HgS_2C . For the semiconductors, the valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S11. The band structures and the projected density of state (PDOS) of the nine Mo_2AO_2C : (a) Mo_2BeO_2C , (b) Mo_2MgO_2C , (c) Mo_2CaO_2C , (d) Mo_2SrO_2C , (e) Mo_2BaO_2C , (f) Mo_2CuO_2C , (g) Mo_2ZnO_2C , (h) Mo_2CdO_2C and (i) Mo_2HgO_2C . For the semiconductors, the valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S12. The band structures and the projected density of state (PDOS) of the nine Mo₂AS₂C: (a) Mo₂BeS₂C, (b) Mo₂MgS₂C, (c) Mo₂CaS₂C, (d) Mo₂SrS₂C, (e) Mo₂BaS₂C, (f) Mo₂CuS₂C, (g) Mo₂ZnS₂C, (h) Mo₂CdS₂C and (i) Mo₂HgS₂C. For the semiconductors, the

valence band maximum and conduction band minimum are marked in red and green circles. The black dot line indicates the Fermi level.

Figure S13. Optical absorption spectra of (a) Sc-based oxycarbide MAOX, (b) Sc-based sulcarbide MAOX, (c) Y-based oxycarbide MAOX, (d) Y-based sulcarbide MAOX, (e) Labased oxycarbide MAOX, (f) Labased sulcarbide MAOX, (g) Cr-based oxycarbide MAOX, (h) Cr-based sulcarbide MAOX, (i) Mo-based oxycarbide MAOX and (j) Mo-based sulcarbide MAOX.

Figure S14. Fundamental bandgap dispersion for 90 MAOX phases classified by (a) M, (b) A, (c) O, (d) AO and (e) MO. The compounds in the same group are in the same color.

Figure S15. The fundamental bandgaps as the function of the a/c ratios for (a) five oxycarbide and (b) five sulcarbide MAOX semiconductors.

Figure S16. Band alignment for ninety MAOX: (a) Sc-based, (b) Y-based, (c) La-based, (d) Cr-based and (e) Mo-based MAOX with respect to vacuum level at 0 eV.

Figure S17. Electron affinities (EAs) and work functions (WFs) according to A.

Figure S18. V_{oc} versus (a) electron affinity (EA) and (b) ionization potential (IP) of MAOX semiconductors.

Table S1. Formation energy (ΔG_f) of MAOX phase and the competing phase in the estimation, where the space groups of M/A oxides/sulfides/carbides are shown in the parentheses

MAOX	Competing phase	$\Delta G_f(eV)$
Sc ₂ BaO ₂ C	Sc ₂ C (P ³ m1), BaO (Fm ³ m), O ₂	-4.975
Sc ₂ BaS ₂ C	Sc_2S_3 (Fddd), BaS (Fm ³ m), BaC ₂ (C2/c), Sc	-0.707
Sc ₂ BeO ₂ C	Sc ₂ C (P ³ m1), BeO (P6 ₃ mc), O ₂	-3.752
Sc ₂ BeS ₂ C	Sc ₂ C (P ³ m1), BeS (F ⁴ 3m), S	-2.610
Sc ₂ CaO ₂ C	Sc ₂ O ₃ (Ia3), Sc, CaO (Fm ³ m), CaC ₂ (I4/mmm)	-1.483
Sc ₂ CaS ₂ C	Sc_2S_3 (Fddd), CaS (Fm ³ m), CaC ₂ (I4/mmm), Sc	-1.826
Sc ₂ CdO ₂ C	Sc_2O_3 (Ia3), CdC (Fm ³ m), Sc	-1.682
Sc ₂ CdS ₂ C	Sc_2S_3 (Fddd), CdC (Fm ³ m), Sc	-3.311
Sc ₂ CuO ₂ C	Sc_2C (P ³ m1), CuO (P4 ₂ /mmc), O ₂	-6.226
Sc ₂ CuS ₂ C	Sc_2C (P ³ m1), CuS (Cmcm), S	-3.111
Sc ₂ HgO ₂ C	Sc ₂ C (P ³ m1), HgO (Pnma), O ₂	-6.373
Sc ₂ HgS ₂ C	Sc ₂ C (P ³ m1), HgS (F ⁴ 3m), S	-2.618

Sc ₂ MgO ₂ C	Sc ₂ C (P ³ m1), MgO (Fm ³ m), O ₂	-6.081
Sc ₂ MgS ₂ C	Sc_2C (P ³ m1), MgS (Fm ³ m), S	-3.646
Sc ₂ SrO ₂ C	Sc_2O_3 (Ia3), SrO (Fm ³ m), SrC ₂ (C2/c), Sc	-0.481
Sc_2SrS_2C	Sc_2S_3 (Fddd), SrS (Fm ³ m), SrC ₂ (C2/c), Sc	-1.275
Sc ₂ ZnO ₂ C	Sc_2C (P ³ m1), ZnO (P6 ₃ mc), O ₂	-5.875
Sc ₂ ZnS ₂ C	Sc_2C (P ³ m1), ZnS (F ⁴ 3m), S	-2.964
Y ₂ BaO ₂ C	Y_2O_3 (Ia3), BaO (Fm ³ m), BaC ₂ (C2/c), Y	-0.041
Y ₂ BaS ₂ C	$Y_2S_3(P2_1/m)$, BaS (Fm ³ m), BaC ₂ (C2/c), Y	-1.171
Y_BeO_C	Y_2C (R ³ m), BeO (P6 ₃ mc), O ₂	-2.323
Y_BeS_C	Y_2C (R ³ m), BeS (F ⁴ 3m), S	-2.653
Y ₂ CaO ₂ C	Y ₂ O ₃ (Ia3), CaO (Fm ³ m), CaC ₂ (I4/mmm), Y	-0.911
Y ₂ CaS ₂ C	Y ₂ S ₃ (P2 ₁ /m), CaS (Fm ³ m), CaC ₂ (I4/mmm), Y	-1.934
Y ₂ CdO ₂ C	Y_2O_3 (Ia3), CdC (Fm ³ m), Y	-1.148
Y_CdS_C	Y_2S_3 (P2 ₁ /m), CdC (Fm ³ m), Y	-3.019
Y ₂ CuO ₂ C	Y_2C (R ³ m), CuO (P4 ₂ /mmc), O ₂	-5.980
Y_CuS_C	Y_2C (R ³ m), CuS (Cmcm), S	-3.468
Y ₂ HgO ₂ C	Y_2C (R ³ m), HgO (Pnma), O ₂	-6.323
Y_HgS_C	Y_2C (R ³ m), HgS (F ⁴ 3m), S	-3.406
Y ₂ MgO ₂ C	Y_2C (R ³ m), MgO (Fm ³ m), O ₂	-4.963
Y ₂ MgS ₂ C	Y ₂ C (R ³ m), MgS (Fm ³ m), S	-4.106
Y ₂ SrO ₂ C	Y_2O_3 (Ia3), SrO (Fm ³ m), SrC ₂ (C2/c), Y	-0.210
Y ₂ SrS ₂ C	$Y_2S_3(P2_1/m)$, SrS (Fm ³ m), SrC ₂ (C2/c), Y	-1.596
Y_2ZnO_2C	Y_2C (R ³ m), ZnO (P6 ₃ mc), O ₂	-5.189
Y ₂ ZnS ₂ C	Y_2C (R ³ m), ZnS (F ⁴ 3m), S	-3.358
La ₂ BaO ₂ C	LaC_2 (I4/mmm), BaO (Fm ³ m), La, O ₂	-4.771
La ₂ BaS ₂ C	La_2S_3 (Pnma), BaS (Fm ³ m), BaC ₂ (C2/c), La	-0.655
La ₂ BeO ₂ C	LaC ₂ (I4/mmm), BeO (P6 ₃ mc), La, O2	-0.888
La ₂ BeS ₂ C	LaC ₂ (I4/mmm), BeS ($F^{\overline{4}}$ 3m), La, S	-2.115
La ₂ CaO ₂ C	La ₂ O ₃ ($P^{\overline{3}}m1$), La, CaO (Fm $^{\overline{3}}m$), CaC ₂ (I4/mmm)	-1.273
La ₂ CaS ₂ C	La ₂ S ₃ (Pnma), CaS (Fm ³ m), CaC ₂ (I4/mmm), La	-0.909
La ₂ CdO ₂ C	La_2O_3 (P ³ m1), CdC (Fm ³ m), La	-0.371
La ₂ CdS ₂ C	La ₂ S ₃ (Pnma), CdC (Fm ³ m), La	-2.061
La ₂ CuO ₂ C	LaC ₂ (I4/mmm), CuO (P4 ₂ /mmc), La, O2	-5.308
La ₂ CuS ₂ C	LaC ₂ (I4/mmm), CuS (Cmcm), La, S	-3.298
La ₂ HgO ₂ C	La ₂ C (I4/mmm), HgO (Pnma), O ₂	-1.842
La ₂ HgS ₂ C	LaC_2 (I4/mmm), HgS (F ⁴ 3m), La, S	-3.486
La ₂ MgO ₂ C	LaC ₂ (I4/mmm), MgO (Fm $\overline{3}$ m), La, O ₂	-3.961
La ₂ MgS ₂ C	LaC ₂ (I4/mmm), MgS (Fm ³ m), La, S	-3.915
La ₂ SrO ₂ C	LaC_2 (I4/mmm), SrO (Fm ³ m), La, O ₂	-4.758
La ₂ SrS ₂ C	La ₂ S ₃ (Pnma), SrS (Fm ³ m), SrC ₂ (C2/c), La	-0.781
La_2ZnO_2C	LaC ₂ (I4/mmm), ZnO (P6 ₃ mc), La, O ₂	-4.266
La_2ZnS_2C	LaC ₂ (I4/mmm), ZnS ($F^{\overline{4}}$ 3m), La, S	-3.193
Cr_2BaO_2C	Cr_2O_3 (R ³ c), BaC ₂ (C2/c), Cr, Ba	-2.598
Cr ₂ BaS ₂ C	Cr ₂ S ₃ (R3), BaC ₂ (C2/c), Cr, Ba	-3.323

Cr ₂ BeO ₂ C	Cr_3C_2 (Pnma), BeO (P6 ₃ mc), Cr, O ₂	-0.164
Cr_BeS_C	Cr_2S_3 (R3), Cr_3C_2 (Pnma), Be, S	-0.447
Cr_2CaO_2C	Cr ₂ O ₃ (R ³ c), Cr, CaO (Fm ³ m), CaC ₂ (I4/mmm)	-0.134
Cr ₂ CaS ₂ C	Cr ₂ S ₃ (R3), CaS (Fm ³ m), Cr, S	-3.336
Cr ₂ CdO ₂ C	Cr_3C_2 (Pnma), CdO (Fm ³ m), Cr, O ₂	-1.911
Cr ₂ CdS ₂ C	Cr ₂ S ₃ (R3), Cr ₃ C ₂ (Pnma), Cd, S	-0.430
Cr ₂ CuO ₂ C	Cr ₃ C ₂ (Pnma), CuO (P4 ₂ /mmc), Cr, O ₂	-2.007
Cr ₂ CuS ₂ C	Cr ₃ C ₂ (Pnma), CuS (Cmcm), Cr, S	-0.148
Cr ₂ HgO ₂ C	Cr_2S_3 (R3), Cr_3C_2 (Pnma), HgO (Pnma), O ₂	-1.008
Cr_2HgS_2C	C ₂ S ₃ (R3), Cr ₃ C ₂ , (Pnma) HgS (F ⁴ 3m), S	-0.117
Cr ₂ MgO ₂ C	Cr ₃ C ₂ (Pnma), MgO (Fm ³ m), Cr, O ₂	-1.696
Cr ₂ MgS ₂ C	Cr ₂ S ₃ (R3), Cr ₃ C ₂ (Pnma), Mg, S	-1.415
Cr ₂ SrO ₂ C	Cr_3C_2 (Pnma), SrO (Fm ³ m), Cr, O ₂	-6.279
Cr ₂ SrS ₂ C	Cr ₃ C ₂ (Pnma), SrS (Fm ³ m), Cr, S	-2.518
Cr ₂ ZnO ₂ C	Cr ₃ C ₂ (Pnma), ZnO (P6 ₃ mc), Cr, O ₂	-1.413
Cr ₂ ZnS ₂ C	Cr ₂ S ₃ (R3), Cr ₃ C ₂ (Pnma), Zn, S	-0.121
Mo ₂ BaO ₂ C	MoC ($P\overline{6}m2$), BaO (Fm $\overline{3}m$), Mo, O ₂	-0.999
Mo ₂ BaS ₂ C	MoS_2 (P6 ₃ mmc), BaC ₂ (C2/c), Mo, Ba	-0.481
Mo ₂ BeO ₂ C	MoC ($P^{\overline{6}}m^{2}$), BeO ($P6_{3}mc$), Mo, O ₂	-0.160
Mo ₂ BeS ₂ C	Mo ₂ C (Pbcn), Be, S	-1.065
Mo ₂ CaO ₂ C	MoO_2 (P4 ₂ /mnm), Mo, CaO (Fm ³ m), CaC ₂ (I4/mmm)	-0.883
Mo ₂ CaS ₂ C	MoS ₂ (P6 ₃ mmc), CaC ₂ (I4/mmm), Mo, Ca	-1.320
Mo ₂ CdO ₂ C	MoC ($P^{\overline{6}}m^{2}$), CdO (Fm ³ m), Mo, O ₂	-2.647
Mo ₂ CdS ₂ C	MoC (P ⁶ m2), CdS (P6 ₃ mc), Mo, S	-0.556
Mo ₂ CuO ₂ C	MoC ($P\overline{6}m2$), CuO ($P4_2$ /mmc), Mo, O ₂	-2.310
Mo ₂ CuS ₂ C	MoC (P6m2), CuS (Cmcm), Mo, S	-1.071
Mo ₂ HgO ₂ C	MoO ₂ (P4 ₂ /mnm), MoC (P ⁶ m2), HgO (Pnma), Mo	-0.930
Mo ₂ HgS ₂ C	MoS_2 (P6 ₃ mmc), MoC (P ^{$\overline{6}$} m2), HgS (F ^{$\overline{4}$} 3m), Mo	-0.092
Mo ₂ MgO ₂ C	MoO_2 (P4 ₂ /mnm), MoC (P ^{$\overline{6}$} m2), MgO (Fm ^{$\overline{3}$} m), Mo	-1.372
Mo ₂ MgS ₂ C	MoC (P ⁶ m2), MgS (Fm ³ m), Mo, S	-0.152
Mo ₂ SrO ₂ C	MoO_2 (P4 ₂ /mnm), SrO (Fm ³ m), SrC ₂ (C2/c), Mo	-0.048
Mo ₂ SrS ₂ C	MoS ₂ (P6 ₃ mmc), SrC ₂ (C2/c), Mo, Sr	-0.730
Mo ₂ ZnO ₂ C	MoC ($P\bar{6}m2$), ZnO ($P6_3mc$), Mo, O ₂	-1.446
Mo ₂ ZnS ₂ C	MoC (P ⁶ m2), ZnS (F ⁴ 3m), Mo, S	-0.044

Table S2. The lattice parameters given in Å, fundamental indirect and direct bandgaps (E_{ind} and E_{dir}) given in eV, open-circuit voltage (V_{oc}) given in eV and spectroscopic limited maximum efficiencies (SLMEs) given in % at 0.2 µm of M₂AO₂C, where M = Sc, Y, Cr, Mo and La, and A = Be, Mg, Ca, Sr, Ba, Cu, Zn, Cd, and Hg, based on the HSE06 calculations. In. Semi. and Di. Semi. stand for the indirect and direct semiconductor.

MAOX	а	С	E_{ind}	E_{dir}	Туре	V _{oc}	SLMEs
Sc ₂ BaO ₂ C	3.344	8.737	0	0	Metal	-	-

Sc ₂ BaS ₂ C	3.691	9.874	0.115	0.688	In. Semi.	0.028	0.444
Sc ₂ BeO ₂ C	3.103	7.413	0.975	1.424	In. Semi.	0.824	17.873
Sc ₂ BeS ₂ C	3.410	8.584	1.144	1.820	In. Semi.	0.909	13.146
Sc ₂ CaO ₂ C	3.283	8.083	1.141	1.546	In. Semi.	0.944	17.493
Sc ₂ CaS ₂ C	3.601	9.285	0.945	1.597	In. Semi.	0.763	12.487
Sc,CdO,C	3.287	8.112	0.732	0.780	In. Semi.	0.648	21.056
Sc_2CdS_2C	3.567	9.306	1.120	1.976	In. Semi.	0.875	10.226
Sc ₂ CuO ₂ C	3.208	7.702	0	0	Metal	-	-
Sc ₂ CuS ₂ C	3.450	8.881	0	0	Metal	-	-
Sc ₂ HgO ₂ C	3.187	9.365	0	0	Metal	-	-
Sc ₂ HgS ₂ C	3.570	9.391	0.601	1.584	In. Semi.	0.390	6.885
Sc ₂ MgO ₂ C	3.173	7.771	1.177	1.619	In. Semi.	0.952	17.711
Sc ₂ MgS ₂ C	3.519	8.950	1.154	1.855	In. Semi.	0.934	12.010
Sc ₂ SrO ₂ C	3.340	8.331	0.998	1.397	In. Semi.	0.842	16.300
Sc ₂ SrS ₂ C	3.655	9.542	0.860	1.484	In. Semi.	0.685	12.865
Sc ₂ ZnO ₂ C	3.213	7.686	1.398	1.867	In. Semi.	1.184	16.007
Sc ₂ ZnS ₂ C	3.505	8.884	1.142	1.954	In. Semi.	0.885	10.930
Y ₂ BaO ₂ C	3.592	9.003	0	0	Metal	-	-
Y ₂ BaS ₂ C	3.900	10.268	0.512	0.722	In. Semi.	0.421	15.020
Y ₂ BeO ₂ C	3.354	7.771	0.860	1.035	In. Semi.	0.706	23.988
Y ₂ BeS ₂ C	3.618	9.039	1.143	1.384	In. Semi.	0.947	23.611
Y ₂ CaO ₂ C	3.498	8.474	0.935	1.071	In. Semi.	0.813	22.068
Y ₂ CaS ₂ C	3.799	9.692	0.988	1.213	In. Semi.	0.837	21.656
Y_2CdO_2C	3.520	8.375	0.309	0.344	In. Semi.	0.291	12.231
Y_2CdS_2C	3.775	9.588	1.264	1.612	In. Semi.	1.032	20.719
Y ₂ CuO ₂ C	3.468	7.860	0	0	Metal	-	-
Y ₂ CuS ₂ C	3.693	9.074	0	0	Metal	-	-
Y2HgO2C	3.508	9.565	0	0	Metal	-	-
Y ₂ HgS ₂ C	3.789	9.657	0.988	1.448	In. Semi.	0.802	17.648
Y ₂ MgO ₂ C	3.369	8.180	0.827	1.033	In. Semi.	0.649	22.234
Y ₂ MgS ₂ C	3.721	9.358	1.173	1.428	In. Semi.	0.988	22.314
Y ₂ SrO ₂ C	3.553	8.708	0.898	1.046	In. Semi.	0.761	22.586
Y_2SrS_2C	3.854	9.949	0.950	1.155	In. Semi.	0.809	21.940
Y ₂ ZnO ₂ C	3.444	8.008	0.987	1.004	In. Semi.	0.916	26.004
Y ₂ ZnS ₂ C	3.707	9.267	1.226	1.533	In. Semi.	1.009	21.807
La ₂ BaO ₂ C	3.773	9.375	0	0	Metal	-	-
La ₂ BaS ₂ C	4.137	10.672	0.470	-	Di. Semi.	0.422	17.721
La ₂ BeO ₂ C	3.565	8.251	0.374	0.390	In. Semi.	0.257	11.614
La ₂ BeS ₂ C	3.819	9.507	0.766	0.818	In. Semi.	0.615	25.617
La ₂ CaO ₂ C	3.658	8.832	0.394	-	Di. Semi.	0.299	13.582
La ₂ CaS ₂ C	4.011	10.110	0.704	-	Di. Semi.	0.612	24.458
La ₂ CdO ₂ C	3.745	8.623	0.368	0.518	In. Semi.	0.330	13.069
La ₂ CdS ₂ C	3.994	9.854	0.984	-	Di. Semi.	0.839	30.405
La ₂ CuO ₂ C	3.753	8.008	0	0	Metal	-	-

La ₂ CuS ₂ C	3.967	9.131	0	0	Metal	-	-
La,HgO,C	3.857	9.750	0	0	Metal	-	-
La,HgS,C	4.030	9.843	1.031	1.029	In. Semi.	0.875	30.884
La ₂ MgO ₂ C	3.621	8.660	0.542	0.530	In. Semi.	0.401	18.669
La ₂ MgS ₂ C	3.929	9.786	0.842	-	Di. Semi.	0.712	28.092
La ₂ SrO ₂ C	3.768	9.129	0.550	-	Di. Semi.	0.442	19.400
La_2SrS_2C	4.071	10.338	0.662	-	Di. Semi.	0.579	23.186
La_2ZnO_2C	3.684	8.340	0.405	0.541	In. Semi.	0.370	15.066
La ₂ ZnS ₂ C	3.920	9.626	0.906	-	Di. Semi.	0.759	29.588
Cr ₂ BaO ₂ C	3.150	8.164	0	0	Metal	-	-
Cr ₂ BaS ₂ C	3.377	9.453	0	0	Metal	-	-
Cr ₂ BeO ₂ C	2.830	7.048	0	0	Metal	-	-
Cr ₂ BeS ₂ C	3.156	7.885	0.621	0.770	In. Semi.	0.393	17.202
Cr ₂ CaO ₂ C	3.112	7.291	0.846	0.898	In. Semi.	0.658	27.726
Cr ₂ CaS ₂ C	3.382	8.493	0	0	Metal	-	-
Cr_2CdO_2C	2.911	9.088	0	0	Metal	-	-
Cr ₂ CdS ₂ C	3.067	11.061	0	0	Metal	-	-
Cr ₂ CuO ₂ C	2.925	7.480	0	0	Metal	-	-
Cr ₂ CuS ₂ C	3.137	8.430	0	0	Metal	-	-
Cr ₂ HgO ₂ C	2.902	9.675	0	0	Metal	-	-
Cr ₂ HgS ₂ C	3.087	11.251	0	0	Metal	-	-
Cr ₂ MgO ₂ C	3.003	7.023	0.992	1.000	In. Semi.	0.736	30.773
Cr ₂ MgS ₂ C	3.272	8.306	0.343	0.678	In. Semi.	0.158	5.415
Cr ₂ SrO ₂ C	3.175	7.565	0.826	0.889	In. Semi.	0.603	25.495
Cr ₂ SrS ₂ C	3.432	8.716	0	0	Metal	-	-
Cr ₂ ZnO ₂ C	3.000	7.210	0.972	0.989	In. Semi.	0.713	30.282
Cr ₂ ZnS ₂ C	3.214	8.380	0.509	0.598	In. Semi.	0.328	14.861
Mo ₂ BaO ₂ C	3.332	8.302	0	0	Metal	-	-
Mo ₂ BaS ₂ C	3.499	9.848	0	0	Metal	-	-
Mo ₂ BeO ₂ C	2.776	8.166	0	0	Metal	-	-
Mo ₂ BeS ₂ C	3.309	8.252	0	0	Metal	-	-
Mo ₂ CaO ₂ C	3.307	7.489	0.779	1.000	In. Semi.	0.601	22.384
Mo ₂ CaS ₂ C	3.492	8.945	0.375	0.673	In. Semi.	0.065	1.713
Mo ₂ CdO ₂ C	3.108	9.637	0	0	Metal	-	-
Mo ₂ CdS ₂ C	3.263	11.08	0	0	Metal	-	-
Mo ₂ CuO ₂ C	3.149	7.570	0	0	Metal	-	-
Mo ₂ CuS ₂ C	3.296	8.703	0	0	Metal	-	-
Mo ₂ HgO ₂ C	3.111	9.850	0	0	Metal	-	-
Mo ₂ HgS ₂ C	3.282	11.368	0	0	Metal	-	-
Mo ₂ MgO ₂ C	2.949	8.187	0	0	Metal	-	-
Mo ₂ MgS ₂ C	3.413	8.645	0.502	0.576	In. Semi.	0.322	14.764
Mo ₂ SrO ₂ C	3.360	7.735	0.753	0.979	In. Semi.	0.571	20.979
Mo ₂ SrS ₂ C	3.514	9.288	0	0	Metal	-	-
Mo ₂ ZnO ₂ C	3.179	7.560	0	0	Metal	-	-

Section S1. Computational Methodology

All calculations were performed using periodic DFT through the Vienna Ab Initio Simulation Package (VASP).¹⁻⁴ The projector-augmented wave (PAW) method was used to describe the interaction between the core and valence electrons.^{5,6} The PBE functional was used for geometry optimizations, whereas for electronic structure and optical calculations,⁷ the hybrid Heyd-Scuseria-Ernzerhof functional (HSE06) including 25% screened Hartree-Fock exchange was employed.^{8,9} For all electronic calculations, a plane wave cutoff energy of 440 eV and a Γ -centred k-point meshes of 5×5×4 were used, with denser k-point meshes of 8×8×5 were applied for optical calculations to ensure that all important k-points were included. These parameters were necessary to converge the total energy of each system to within 10^{-5} $eV \square$ atom⁻¹. The atomic positions, a lattice shape, and cell volume were allowed to relax during geometry optimization, and the structures were considered to be converged once the forces on each atom were below 0.02 eV \square Å⁻¹. The maximum photovoltaic efficiency and open-circuit voltage (V_{ac}) of an ideal absorber thin film were estimated using the spectroscopic limited maximum efficiency (SLME) metric introduced by Yu and Zunger,¹⁰ based on the absorption calculated from HSE06 functional with tetrahedron correction.¹¹ The ionization potential was calculated using the core-level alignment approach of Wei and Zunger,¹² and the non-polar (110) surface was selected due to the absence of any dangling bonds. The work function was regarded as the ionization potential of metallic MAOX.

Section S2. Oxynitride and Sulnitride MAOX phase

A series of MAOX with A=Ca and M=Sc, Y, La, Cr, Mo were selected out as the representatives for the test of the metallicity of oxynitride and sulnitride MAOX, and the corresponding band structures are shown in Figure S1. As for the band structures of Sc₂CaO₂N, Sc₂CaS₂N, Y₂CaO₂N, Y₂CaS₂N, La₂CaO₂N, and La₂CaS₂N, energy levels are found crossing the Fermi level, indicating the conduction band is partially filled. Likewise, in the band structures of Cr₂CaO₂N, Cr₂CaS₂N, Mo₂CaO₂N, Mo₂CaS₂N, the band overlaps with another higher energy unoccupied conduction band. Therefore, all cases are metallic.

References

- 1 G. Kresse and J. Hafner, Phys. Rev. B, 1993, 47, 558-561.
- 2 G. Kresse and J. Hafner, Phys. Rev. B, 1994, 49, 14251-14269.
- 3 G. Kresse and J. Furthmuller, Phys. Rev. B, 1996, 54, 11169-11186.
- 4 G. Kresse and J. Furthmuller, Comp. Mater. Sci., 1996, 6, 15-50.
- 5 P. E. Blöchl, Phys. Rev. B, 1994, 50, 17953-17979.
- 6 G. Kresse and D. Joubert, Phys. Rev. B, 1999, 59, 1758-1775.

- 7 J. P. Perdew, K. Burke and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865-3868.
- 8 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2003, 118, 8207-8215.
- 9 J. Heyd, G. E. Scuseria and M. Ernzerhof, J. Chem. Phys., 2006, 124, 219906-219901.
- 10 L. P. Yu and A. Zunger, Phys. Rev. Lett., 2012, 108, 068701.
- 11 P. E. Blochl, O. Jepsen and O. K. Andersen, Phys. Rev. B, 1994, 49, 16223-16233.
- 12 S. H. Wei and A. Zunger, Appl. Phys. Lett., 1998, 72, 2011-2013.