Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information for

Journal of Materials Chemistry C

Novel benzodithiophene unit with alkylthiobiphenyl side chain for

constructing high-efficiency polymer solar cells

Xiaoming Li, ‡^{a,c} Gongyue Huang, ‡^c Huanxiang Jiang,^c Shanlin Qiao, *^a Xiao Kang,^{a,c} Weichao Chen, *^b Renqiang Yang*^c

^a College of Chemistry and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China

*E-mail: qiaosl@qibebt.ac.cn

^b College of Textiles & Clothing, Qingdao University, Qingdao 266071, China

*E-mail: chenwc@qdu.edu.cn

^c Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Songling Road, Qingdao 266101, China

*Email: <u>yangrq@qibebt.ac.cn</u>

‡Dual Contributors

Fig. S1 TGA plots of PBDTBPS-BDD with a heating rate of 10 °C/min under an inert atmosphere.

Fig. S2 Curves of PBDTBPS-BDD as casted film vs. Fc/Fc⁺ in acetonitrile solution.

Fig. S3 (a) The J-V cures of $PC_{71}BM$ -based devices with different polymer/ $PC_{71}BM$ ratios (b) The J-V cures of ITIC-based devices with different polymer/ ITIC ratios.

Fig. S4 (a) The J-V cures of $PC_{71}BM$ -based devices with different annealing temperature (b) The J-V cures of ITIC-based devices with different annealing temperature.

Fig. S5 (a) The J-V cures of ITIC-based devices with different additive.

	Annealing temperature	additive	Voc	J _{SC}	FF	PCE
	(°C)	(v/v)	(∨)	(mA cm ⁻²)	(%)	(%)
	100	0.5%DPE	0.93	16.49	56.83	8.72
	100	0.5%DIO	0.92	14.72	54.61	7.44
PBDTBPS- BDD:ITIC	100	0.5% CN	0.92	15.17	52.64	7.37
	100	1%DPE	0.92	15.43	54.92	7.80
	100	2%DPE	0.92	14.72	50.64	6.86

Device	$\mu_{\rm e}$ (cm²/Vs)	thickness	$\mu_{ m h}$ (cm²/Vs)	thickness	$\mu_{ m h}/\mu_{ m e}$
		(nm)		(nm)	
PBDTBPS-BDD:PC71BM	5.93×10 ⁻⁴	120	5.25×10 ⁻⁴	115	0.89
PBDTBPS-BDD:ITIC	1.02×10 ⁻⁴	100	1.45×10 ⁻⁴	105	1.42

 Table S2. The charge carrier mobilities of the optimal blend films.