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Theoretical Discovery of half-metallic Dirac
dispersion in experimentally synthesized two
dimensional metal semiquinoid frameworks

Table S1. Energies for M-SF under different magnetic states (ferromagnetic (FM),
antiferromagnetic (AFM), and nonferromagnetic (NM)). The bold energies are relatively lower
in each configurations.

Energy (eV) M AFM NM
Ti-SF -281.027 -280.944 -280.024
V-SF -280.038 -280.230 -280.329
Cr-SF -278.894 -279.144 -277.726
Fe-SF -273.192 -272.759 -272.203

» (b) Cr-SF

FIG. S1. The spin density of (a) Fe-SF (ferromagnetic) and (d) Cr-SF (antiferromagnetic)
with isovalue of 0.02 e/ A3,



Thermodynamic stability

The thermodynamic stability was evaluated through Ab initio molecular dynamics (AIMD)

simulations in a 2x2x1 supercell at room temperature (300K), based on the Nosé-Hoover

method. The whole simulations last 10 picoseconds (ps) with a time step of 1 femtosecond (fs).
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FIG. S2. Total potential energies of (a) Ti-SF, and (b) V-SF fluctuate during the AIMD
simulation at 300K. The top view of Ti- and V-SF during the whole simulation are inserted in
the pictures.



(c) Fe-SF 4 »

FIG. S3. Charge density difference for (a) V, (b) Cr, and (c) Fe-SF with respect to the metal
atoms and ligands. The yellow and cyan region represent the electron accumulation and
depletion area with an isovalue of 0.02 e/ A3.

Table S2. Bader charge analysis of M-SF.

Average atomic charge (a.u.)

metal atom O atom C atom
Ti-SF +1.90 -0.91 +0.05
V-SF +2.14 -0.95 +0.44
Cr-SF +1.81 -0.92 +0.42

Fe-SF +1.55 -0.89 +0.39
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FIG. S4. Band structures of M-SF at magnetic ground states calculated by GGA PBE
functional.
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FIG. SS. Density of states of (a) V-SF and (b) Ti-SF. Fermi level (red dashed line) has been
set to zero.
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FIG. S6. Band structures of V-SF and Ti-SF at magnetic ground states calculated by GGA+U

method, the U values are set to 2.0 eV for V, and 2.3 eV for Ti 3d orbitals!.



Strain effect.

Generally speaking, the mechanical strength of M-SF is not very well, the critical breaking
strain of V-SF and Ti-SF are 10% and 8%, respectively (Fig. S7). Therefore, we only employed
a small biaxial strain (from -5% to 5%) in our band calculations. For V-SF, strains show little
impact on Dirac points, only a bandgap of 5.0 meV opens under -5% compression. Whereas,
for Ti-SF, small bandgaps appear under tension and -1% compression. It is noteworthy that the
Dirac cones will be broken when the compression reaching -3% in Ti-SF, due to the rotation
of organic ligands (Fig. S8). The fermi velocity of the conical bands under strains show on

significant change in comparison with the full relaxed structures.
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FIG. S7. Strains in the (a) V-SF and (b) Ti-SF subjected to biaxial strain. Band structures of
(¢) V-SF and (d) Ti-SF near K point under finite equal-biaxial strain. HSE functional is
employed in band calculations. The fermi level (red dashed line) has been set to zero.

FIG. S8. The optimized structures of Ti-SF under the strain of (a) -3% and (b) 0%.



The calculation of exchange interaction (J)

For Ti-SF, the centre metal atoms (Ti) show ferromagnetic coupling with its
neighbouring atoms. Here, to be simple, we regard the Ti atoms as the magnetic centre (Fig.
S9), so that, Ti-SF will show similar magnetic structure with Crl;.2 According to Heisenberg
model, the spin Hamiltonian can be written as:

H=-] Z 0,0;

<ij>

where o is +1 or -1 at each magnetic site. Thus, the energies for the magnetic configuration FM

and AFM are derived as following equations:

3 2

3 2
Egpw = Eq + 5N o]

therefore,
_ Eppm = Epy
3N|a|?

where N is the number of the magnetic atom in the unit cell. £,z and Ery, represent the
energies under AFM and FM magnetic order, respectively. Besides, on the basis of our DFT

calculation, T, for Crl; is 46 K, which is very close to the experimental value’.



Tight binding model.

Due to the strong n-d conjugation and local charge density near fermi level, here we
treated the central metals as the vertexes of a honeycomb sublattice, like the Carbon atoms of
Graphene. Considering the hopping between nearest neighbors (site A and B), the TB

H (k) = ( e tf )
tf € )leads to two energy eigenvalues

Hamiltonian
Ej,=extf(k)x f" (k)
with

and
t=<‘PA|H|‘PB)

Then we fit our HSE band structures of V-SF and Ti-SF in the first BZ with our TB
model.
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FIG. S9. Tight binding model for M-SF. Pink and blue balls represent different sites in the unit
cell.
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Molecular orbital model.

Inspired by the previous works*, herein, we perfectly explained the magnetism of M-SF
with a local D; symmetry at the metal-center, and successfully predicted the magnetism of
unsynthesized metal-semiquinoid frameworks. First, we considered that the bonding = orbitals
of organic ligands are full-filled, because the outmost orbitals of the ligand atoms are all over
half occupied (non-metal atoms). Therefore, the orbitals with & features ought to be ©* orbitals
of ligands*. Besides, as mentioned above, the highest valence band and lowest conduction band
of M-SF ligands both show ©* orbital feature, so that, we considered that these orbitals are half
occupied. Previous works gave a simple combination of 7" and t,, orbitals’ (Fig. S11(a)). This
molecular orbital model only can be used when the metal atoms have no more than 6 3d
electrons. In order to predict the magnetism of all 3d transition metals, the combination of
ligand ¢ and metal 4s and e, orbitals should be involved. As an example, we exhibited
molecular orbital model of V-SF and Co-SF. The previous model shows no single electrons in
V-SF molecular orbitals, indicating its nonmagnetic properties, which also can be illustrated
by our molecular model (Fig. S11(b)). However, through considering the interaction between
ligand ¢ and metal 4s and e, orbitals, our molecular orbital model can predict the magnetic
state of metal-semiquinoid frameworks with all 3d transition metal center. Here we predicted
that M-SF (M=Sc, V, Co, Cu) are all nonmagnetic, which can be confirmed by our DFT
calculations (Table S3).
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FIG. S11. Proposed molecular orbital model of (a) V-SF and (b) Co-SF with local D; symmetry
at the metal center.
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Table S3. Energies of M-SF (here, M represents all 3d transition metals) under different
magnetic states (ferromagnetic (FM), antiferromagnetic (AFM), and nonferromagnetic (NM)).
The magnetic moments (My,_sr) under ferromagnetic state of them are shown in the table.

The bold energies are relatively lower in each configurations.

Py (V) e M Ml (1)
Sc-SF -279.206 -279.729 -279.731 0.0
Ti-SF -281.027 -280.944 -280.024 2.0
V-SF -280.038 -280.230 -280.329 0.0
Cr-SF -278.894 -279.144 -277.726 6.0
Mn-SF -275.997 -276.245 -275.625 4.0
Fe-SF -273.192 -272.759 -272.203 2.0
Co-SF -269.509 -270.134 -270.135 0.0
Ni-SF -264.306 -264.211 -264.304 2.0
Cu-SF -259.241 -259.240 -259.454 0.0

Zn-SF -257.814 -257.720 -256.484 2.0
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