Journal of

Materials Chemistry C

COMMUNICATION

Supplementary information

Photolithographic stretchable transparent electrode for all-solution-processed fully transparent conformal organic transistor array[†]

Nan Cui,^a Qingxin Tang,^{*a} Hang Ren,^a Xiaoli Zhao,^a Yanhong Tong^a and Yichun Liu ^{*a}

Dr. N. Cui, Prof. Q. Tang, H. Ren, Dr. X. Zhao, Prof. Y. Tong, and Prof. Y. Liu

Centre for Advanced Optoelectronic Functional Materials Research and Key Laboratory of UV-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, Changchun 130024, P. R. China.

E-mail: tangqx@nenu.edu.cn; ycliu@nenu.edu.cn

S1. Morphology of SWCNT network on PEDOT:PSS thin film.

Fig. S1 AFM image of dense SWCNT network on PEDOT:PSS thin film.

S2. Fabrication process of photolithographic stretchable transparent PEDOT:PSS/SWCNT hybrid electrode.

Fig. S2 Schematic illustration for the fabrication process of photolithographic stretchable transparent PEDOT:PSS/SWCNT hybrid electrode.

S3. Morphology of photolithographic PEDOT:PSS/SWCNT patterns.

Fig. S3 SEM images of PEDOT:PSS/SWCNT patterns.

S4. Deformability of the PEDOT:PSS/SWCNT electrode.

S5. OTFT devices fabricated by conventional method.

Fig. S5 (a) Schematic image of C₈-BTBT OTFT fabricated on silicon substrate (gate) with thermally evaporated Au source/drain electrode through a shadow mask. (b,c) Typical transfer and output characteristics of the device measured in air at room temperature. ($\mu = 1.7 \text{ cm}^2 \text{ V}^{-1} \text{ s}^{-1}$)

S6. Performances of reported flexible OTFTs and our transparent conformal OTFTs with PEDOT:PSS/SWCNT electrode.

Semiconductor	Electrode	Dielectric	μ (cm² V ⁻¹ s ⁻¹)	<i>V</i> _τ (V)	I _{on} /I _{off}	Ref.
DPh-DNTT	Au (source/drain); Al (gate)	AlO _x /SAM	2.0	2 V	>105	[1]
pentacene			0.37	-21.3	4.9 × 10 ⁵	
DNTT	Au (source/drain): Ag (gate)	parylene-C	0.36	-15.7	1.6 × 10⁵	[2]
PTAA	Au (source/urani), Ag (gate)		0.013	-13.0	6.9×10^{4}	
TIPS pentacene	PEDOT:PSS (source/drain); Ag (gate)	PVP	0.95 ± 0.12	-0.19 ± 0.03	2.5 × 10 ³	[3]
P3HT	Au (source/drain); PEDOT:PSS (gate)	polyelectrolyte	2.0	0.5-1.0	10 ⁵	[4]
BTBT-C ₁₂ -PA	Au (source/drain); Al (gate)	AlO _x	1.7 × 10 ⁻³	-	10 ²	[5]
TIPS pentacene		Mylar	0.15		10 ³ - 10 ⁴	[6]
TES-ADT	Ag (source/drain/gate)	membrane	0.4	-	10 ³ - 10 ⁴	[0]
PDPP5T	Au (source/drain); Cr/Au (gate)	AI_2O_3	0.62	-	2.47 × 10 ⁶	[7]
PIDT-BT			0.56	-0.35	>104	[0]
P3HT	Au (source/drain/gate)	PEG	1.28	0.11	>103	[8]
N2200			0.1		10 ²	[0]
pBTTT	Au (source/drain/gate)	PMMA	0.3	-	10 ⁵	[-]
C8-BTBT	Au (source/drain); Au grid (gate)	C-PVA	2.0	-15	10 ⁵ - 10 ⁶	[10]
pentacene		PAN/PS	0.52	-8.6		[11]
PDI-C8	Au (source/drain/gate)		0.23	8.5	-	
PTDPPSe-SiC4	Graphene/Au	SU-8	1.43	-	>105	[12]
	(source/drain); Au (gate)		0.37	_	>10 ²	
C8-BTBT	PEDOT:PSS/SWCNT (source/drain/gate)	C-PVA	2.7	±10	>104	Our work

Table S6. Performances of reported flexible OTFTs and our transparent conformal OTFTs.

[1] T. Yokota, K. Kuribara, T. Tokuhara, U. Zschieschang, H. Klauk, K. Takimiya, Y. Sadamitsu, M. Hamada, T. Sekitani and T. Someya, *Adv. Mater.*, 2013, **25**, 3639.

[2] H. Jeong, S. Baek, S. Han, H. Jang, S. H. Kim and H. S. Lee, Adv. Funct. Mater., 2018, 28, 1704433.

[3] S. Conti, S. Lai, P. Cosseddu and A. Bonfglio, Adv. Mater. Technol., 2016, 1600212.

[4] S. W. Lee, H. J. Lee, J. H. Choi, W. G. Koh, J. M. Myoung, J. H. Hur, J. J. Park, J. H. Cho and U. Jeong, Nano Lett., 2010, 10, 347.

[5] T. Schmaltz, A. Y. Amin, A. Khassanov, T. Meyer-Friedrichsen, H.-G. Steinrück, A.Magerl, J. J. Segura, K. Voitchovsky, F. Stellacci and M. Halik, *Adv. Mater.*, 2013, 25, 4511.

[6] H. T. Yi, M. M. Payne, J. E. Anthony and V. Podzorov, Nat. Commun., 2012, 3, 1259.

[7] Y. Ding, C. Zhu, J. Liu, Y. Duan, Z. Yi, J. Xiao, S. Wang, Y. Huang and Z.g Yin, Nanoscale, 2017, 9, 19050.

[8] Z. Liu, Z. Yin, J. Wang and Q. Zheng, Adv. Funct. Mater., 2018, 1806092.

[9] Y. Hu, C. Warwick, A. Sou, L. Jiang and H. Sirringhaus, J. Mater. Chem. C, 2014, 2, 1260.

[10] N. Cui, H. Ren, Q. Tang, X. Zhao, Y. Tong, W. Hu and Y. Liu, *Nanoscale*, 2018, **10**, 3613.

[11] L. Zhang, H. Wang, Y. Zhao, Y. Guo, W. Hu, G. Yu and Y. Liu, Adv. Mater., 2013, 25, 5455.

[12] E. K. Lee, C. H. Park, J. Lee, H. R. Lee, C. Yang and J. H. Oh, Adv. Mater., 2017, 29, 1605282.