Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Which Isomer is Better for Charge Transport: *Anti*or *Syn-*?

Peng Hu, ab Jun Ye*c and Hui Jiang*b

^a School of Physics, Northwest University, Xi'an 710069, China

^b School of Materials Science and Engineering, Nanyang Technological University, 639798, Singapore. E-mail: jianghui@ntu.edu.sg

^c Institute of High Performance Computing, Agency for Science, Technology and Research, 138632, Singapore. E-mail: yej@ihpc.a-star.edu.sg

Scheme S1 The synthetic routes for *syn-***1** and *anti-***1**.

Br₂, CH₂Cl₂
SCl₂, Et₂O
SCl₂, Et₂O
SCl₂, Et₂O
SCl₂, Et₂O
SCl₂, Et₂O
Syn-2

$$S = \frac{1}{8} \text{BuLi}, \text{Et}_2 \text{O}}{8} \text{Suli}, \text{Et}_2 \text{O}}$$
Sulli, Et₂O
Sulli,

Scheme S2 The synthetic routes for *syn-2* and *anti-2*.

TMS—H
$$Pd(PPh_3)_2Cl_2$$
 H_3CS I_2 SCH_3 I_2

Scheme S3 The synthetic routes for *anti-*3.

Scheme S4 The synthetic routes for *syn*-ADT derivatives (*syn*-4a and *syn*-4b).

*syn-***5a**: R=*i*-Pr₃ *syn-***5b**: R=*i*-Bu₃ *syn-***5c**: R=*n*-Bu₃

Scheme S5 The synthetic routes for syn-5a, syn-5b, and syn-5c).

anti-6a: R=hexyl

anti-6b: R=3,7-dimethyloctyl

Scheme S6 The synthetic routes for anti-6a and anti-6b).

Scheme S7 The synthetic routes for *syn-***7**.

Scheme S8 The synthetic routes for *anti-*7.

Scheme S9 The synthetic routes for *syn-9* and *anti-9*.