Electronic supplementary information for the manuscript

Molecular structure – electrical performance relationship for OFETbased memory elements comprising unsymmetrical photochromic diarylethenes

Dolgor D. Dashitsyrenova, Andrey G. Lvov, Lyubov A. Frolova, Alexander V. Kulikov, Nadezhda N. Dremova, Valerii Z. Shirinyan, Sergey M. Aldoshin, Mikhail M. Krayushkin, and Pavel A. Troshin

Contents

Experimental procedures
Table S1. Spectral properties of diarylethenes TO-0, TO-1 and TO-2 before and after exposure to UV light (365 nm) in acetonitrile4
Figure S1. Absorption spectra of compounds TO-0 , TO-1 and TO-2 before exposure to UV light (in acetonitrile, $C = 2.7 \times 10^{-5}$ M)4
Figure S2. Absorption spectra of compounds TO-0 , TO-1 and TO-2 after exposure to UV light (365 nm) in acetonitrile (C = 2.7×10^{-5} M)
Figure S3. SEM image of the OFET cross-section5
Figure S4. SEM images of 1:1 (w/w) blend films comprising of diarylethene TO-0 (a), TO-1 (b) or TO-2 (c) and C ₆₀ in two different magnifications6
Figure S5. Evolution of the transfer characteristics of the devices comprising TO-0 under simultaneous exposure to a negative (a) or positive (b) applied bias voltage ($V_P = -5 V$ or $+5 V$) and violet light ($\lambda = 405 \text{ nm}$) as a function of the programming time
Figure S6. Evolution of the transfer characteristics of the devices comprising TO-1 under simultaneous exposure to a negative (a) or positive (b) applied bias voltage ($V_P = -5 V$ or $+5 V$) and violet light ($\lambda = 405 \text{ nm}$) as a function of the programming time
Figure S7. Evolution of the transfer characteristics of the devices comprising TO-2 under simultaneous exposure to a negative (a) or positive (b) applied bias voltage ($V_P = -5 V$ or $+5 V$) and violet light ($\lambda = 405 \text{ nm}$) as a function of the programming time
Figure S8. Evolution of the transfer characteristics of the devices comprising TO-0 under simultaneous exposure to violet light (λ = 405 nm) and electric bias (both applied for a fixed programming time t _P = 100 ms) as a function of the bias voltage7
Figure S9. Evolution of the transfer characteristics of the devices comprising TO-1 under simultaneous exposure to violet light (λ = 405 nm) and electric bias a function of the bias voltage. The programming times were fixed at 100 ms (a) and 2 s (b)7
Figure S10. Evolution of the transfer characteristics of the devices comprising TO-2 under simultaneous exposure to violet light (λ = 405 nm) and electric bias a function of the bias voltage. The programming time was fixed at 100 ms (a) and 10 ms (b)
Figure S11. The absorption spectra of thin films of C_{60} , TO-1 and bilayer film TO-1 / C_{60} 8
Figure S12. ESR spectra of an individual C_{60} film recorded at 123K in dark and under illumination with violet light (405 nm) showing no photoinduced signals

Figure S13. Proposed stabilization of the positive charge via oxidative cyclization of TO-0 (a).	
Schematic switching mechanism for OFETs comprising TO-0 (b)	.9

Experimental procedures

Materials and Instrumentation

The devices were fabricated using a procedure described previously (L. I. Leshanskaya et al., *Adv. Optical Mater.*, 2017, 5, 1601033) with small modifications. Aluminum gate electrodes (180 nm thick) were deposited by thermal evaporation in vacuum (2×10^{-6} mbar) through a shadow mask. Thin layer of AlO_x (~10 nm) was grown via electrochemical anodic oxidation of aluminum gate electrodes in 0.1 M citric acid (Acros Organics) at a constant potential of 35 V for 6 min. Afterwards, the photochromic layer of a diarylethene **TO-0**, **TO-1** or **TO-2** (with the thickness 60-100 nm) was formed by spin-coating 25 μ L of 10 mg/mL toluene solution atop AlO_x at 750 rpm inside a nitrogen glove box. Then the samples were transferred to the vacuum chamber, where fullerene C₆₀ (32-70 nm) was deposited by thermal evaporated through a shadow mask to form the source and drain electrodes with a channel length and width of 80 μ m and 2 mm, respectively. The layer thicknesses were confirmed by depositing the single-component films on glass in the same regime as while fabricating the device and profiling them through a scratch in a contact mode using NTEGRA PRIMA NT-MDT probe microscope.

Measuring the electrical characteristics of OFET-based memory devices

The procedure was essentially the same as reported previously (L. A. Frolova et al., *Chem. Commun.*, 2015, 51, 6130–6132). The electrical characterization of the devices was performed using a double-channel Keithley 2612A instrument. While programming the memory elements, an electrical bias between the source and gate electrodes of the transistor (programming voltage V_p) and illumination provided by diode laser (405 nm, ~60 mW·cm⁻²) were applied simultaneously. The length of the single laser pulse was modulated within the range from 1 ms to 60 s using Advantest R6240A voltage current source/monitor. The transfer characteristics of the transistors and drain currents at constant gate voltage were registered after each programming step. All measurements were carried out inside a nitrogen glove box with <1 ppm O_2 and < 1 ppm H_2O .

Light-enhanced spin resonance (LESR) spectroscopy

To perform light-induced electron spin resonance measurements, composite films comprised of diarylethene **TO-1**, C_{60} and [60]PCBM with a mass ratio of the components equal to 1:1:1 were deposited on the walls of ESR quartz tubes from chlorobenzene solution. [60]PCBM was added to improve the miscibility of the components and overall uniformity of the films. Similarly, reference samples of individual C_{60} or dihetarylethenes were prepared. Measurements were performed using Radiopan SE/X-2544 spectrometer in dark and under illumination with laser light λ =405 nm at 123 K (liquid nitrogen cooling) and also in dark at room temperature (273 K).

Table S1. Spectral properties of diarylethenes **TO-0**, **TO-1** and **TO-2** before and after exposure to UV light (365 nm) in acetonitrile

Me N Me O Ph Vis Me O Ph					
(open isomer A closed isomer		r B		
Diarylethene	Structure	$\lambda_{max}{}^{A}$, nm	$\lambda_{max}{}^{B}$, nm		
		(ε, M ⁻¹ ·cm ⁻¹) ^a	(ε, M ⁻¹ ·cm ⁻¹)		
то-0	Me N Me S Me O Ph	290 (16500)	452 (8900)		
TO-1	Me N Me S Me O Ph	298 (26000)	523 (7600)		
то-2	Me N Me S Me O Ph	284 (24300)	549 (6000)		

Figure S1. Absorption spectra of compounds **TO-0**, **TO-1** and **TO-2** before exposure to UV light (in acetonitrile, $C = 2.7 \times 10^{-5}$ M).

Figure S2. Absorption spectra of compounds **TO-0**, **TO-1** and **TO-2** after exposure to UV light (365 nm) in acetonitrile ($C = 2.7 \times 10^{-5}$ M).

Figure S3. SEM image of the OFET cross-section.

Figure S4. SEM images of 1:1 (w/w) blend films comprising of diarylethene **TO-0** (a), **TO-1** (b) or **TO-2** (c) and C_{60} in two different magnifications.

Figure S5. Evolution of the transfer characteristics of the devices comprising **TO-0** under simultaneous exposure to a negative (a) or positive (b) applied bias voltage ($V_P = -5 V \text{ or } +5 V$) and violet light ($\lambda = 405 \text{ nm}$) as a function of the programming time.

Figure S6. Evolution of the transfer characteristics of the devices comprising **TO-1** under simultaneous exposure to a negative (a) or positive (b) applied bias voltage ($V_P = -5 V \text{ or } +5 V$) and violet light ($\lambda = 405 \text{ nm}$) as a function of the programming time.

Figure S7. Evolution of the transfer characteristics of the devices comprising **TO-2** under simultaneous exposure to a negative (a) or positive (b) applied bias voltage ($V_P = -5 V \text{ or } +5 V$) and violet light ($\lambda = 405 \text{ nm}$) as a function of the programming time.

Figure S8. Evolution of the transfer characteristics of the devices comprising **TO-0** under simultaneous exposure to violet light (λ = 405 nm) and electric bias (both applied for a fixed programming time t_P = 100 ms) as a function of the bias voltage.

Figure S9. Evolution of the transfer characteristics of the devices comprising **TO-1** under simultaneous exposure to violet light (λ = 405 nm) and electric bias a function of the bias voltage. The programming times were fixed at 100 ms (a) and 2 s (b).

Figure S10. Evolution of the transfer characteristics of the devices comprising **TO-2** under simultaneous exposure to violet light (λ = 405 nm) and electric bias a function of the bias voltage. The programming time was fixed at 100 ms (a) and 10 ms (b).

Figure S11. The absorption spectra of thin films of C_{60} , TO-1 and bilayer film TO-1/ C_{60} .

Figure S12. ESR spectra of an individual C_{60} film recorded at 123K in dark and under illumination with violet light (405 nm) showing no photoinduced signals.

Figure S13. Proposed stabilization of the positive charge via oxidative cyclization of **TO-0** (a). Schematic switching mechanism for OFETs comprising **TO-0** (b).