Solvents-induced aggregation based on a heteroleptic Ir(III) complex via

hydrogen bonds

Zhongming Song, Jia Wang, Rui Liu*, Guangke He, Meng Tang, and Hongjun

 Zhu^*

Department of Applied Chemistry, College of Chemistry and Molecular

Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

*Corresponding author. Phone: +86-25-58139539.

Fax: +86-25-58139539.

E-mail: rui.liu@njtech.edu.cn (R. Liu)

*Corresponding author. Phone: +86-25-83172358.

Fax: +86-25-83587428.

E-mail: zhuhj@njtech.edu.cn (H. Zhu)

Scheme S1. Schematic illustration of the synthetic routes and molecular structures.

	Absorption	Emission	æh	
Solvent	$\lambda_{abs}/nm \ (\epsilon/10^4 \ L \ mol^{-1} \ cm^{-1})^a$	$\lambda_{\rm max}^{\rm b}/{\rm nm}$	Ψ°	
Toluene	287(7.91), 299(9.83), 350(3.10)	534	0.006	
Chloroform	241(9.93), 250(8.41), 269(9.07), 299(9.83),	542	0.011	
	350(2.86)			
DCM	231(9.83), 240(9.26), 250(7.56), 268(8.23),	535	0.005	
	298(8.69), 319(5.37), 349(2.72)			
THF	238(9.97), 250(7.49), 267(8.23), 286(7.08),	534	0.002	
	298(8.00), 348(2.44)			
Ethanol	205(9.93), 231(3.29), 239(3.05), 250(2.31),	554	_	
	266(2.56), 297(2.63), 349(0.85)			

Table S1. Photophysical data for complex in solution

^{*a*} Measured in solution (1.0×10^{-7} M) at 298 K under air. ^{*b*} Determined by quinine sulfate ($\Phi_{PL} = 0.54$ in 0.1M H₂SO₄) as a standard (1.0×10^{-5} M, Ir(pbah)).

 Table S2. Lifetime and absolute quantum yield in DCM/Hexane (1/9) and

 ethanol/water (1/9) solution

Sample Solution	Quantum Yield ^a		Lifetime	
Sample Solution	370-480 nm	500-700 nm	430 nm	550 nm
DCM/Hexane	3.1%	29.2%	0.73 ns	1.90 µs
Ethanol/Water	1.8%	24.6%	1.16 ns	1.39 µs

^a Absolute phosphorescence quantum yield determined by calibrated integrating sphere

system at 298 K.

Fig. S1 Excitation spectra of the high energy emission band, the low energy emission

band at two maximum peaks in DCM and EtOH, respectively ($c=1.0\times10^{-4}$ mol/L).

Fig. S2 Single-crystal structure and their dimer of complex 2 previously reported.

Fig. S3 $^{1}\text{H}^{-1}\text{H}$ NOESY spectra of **Ir(pbah)** (0.01 mol/L, 400 MHz, 298 K) in CD₃OD, the partial chemical shift from 6.0 to 10.0 ppm a) and total chemical shift b), respectively.

Fig. S4 Emission spectra of Ir(pbah) upon freezing DCM or DCM/EtOH (V/V=2/1)

solution

Fig. S5 FT-IR spectrum of Film 2 made from ethanol/water solution contained Ir(pbah)