Supporting Information

One-pot Synthesis of Ultrasmall β-NaGdF₄ Nanoparticles with Enhanced Upconversion Luminescence

Chunyan Cheng^{a+}, Yueshan Xu^{a+}, Songtao Liu^a, Yuanyuan Liu^a, Xian

Wang^a, Jianxun Wang^a, and Gejihu De^{*abc}

Figure S1. Histogram of the β -NaGdF₄: Yb/Er NPs size obtained under 12 mmol NaF, 15mL ODE, 15mL OA, at 290 °C for 1 h.

Figure S2. Histogram of the β -NaYF₄: Yb/Er NPs size obtained under 12 mmol NaF, 15mL ODE, 15mL OA, at 300 °C for 1.5 h.

Figure S3. XRD patterns of β -NaYF₄: Yb/Er NPs synthesized under different Gd³⁺ doping concentration (a) 9 %, (b) 18 %, (c) 27 %, (d) 36 %, (e) 45 %, (f) 54 %.

Table S1. Effects of different Gd^{3+} doping concentration to size of β -

Gd ³⁺ doping concentrations	XRD Size / nm
9 %	14.44
18 %	10.74
27 %	9.13
36 %	7.03
45 %	6.25
54 %	4.61

NaYF₄: Yb/Er NPs.

Figure S4. TEM images of NaYF₄: Yb/Er NPs synthesized under different Gd^{3+} doping concentration. (a) 9 %, (b) 18 %, (c) 27 %, (d) 36 %, (e) 45 %.

Figure S5. Histogram of the β -NaYF₄: 27 %Gd/Yb/Er NPs size obtained under 12 mmol NaF, 15mL ODE, 15mL OA, and 290 °C for 1 h.

Figure S6. XRD patterns of NaLuF₄: Yb/Er NPs synthesized under different Gd^{3+} doping concentration (a) 9 %, (b) 18 %, (c) 27 %, (d) 36 %, (e) 45 %, (f) 54 %.

Figure S7. TEM, HRTEM, FFT, and elemental analysis images of NaLuF₄: Yb/Er NPs synthesized under different Gd³⁺ doping concentration (a), (b), (c), (d) 27 %; (e), (f), (g) 36 %; (h), (i), (j) 45 %.

Figure S8. XRD patterns of NaYbF₄: Yb/Er NCs synthesized under different Gd^{3+} doping concentration (a) 9 %, (b) 18 %, (c) 27 %, (d) 36 %, (e) 45 %, (f) 54 %.

Figure S9. TEM, HRTEM and FFT image of NaYbF₄: Yb/Er NPs synthesized under different Gd³⁺ doping concentration (a) 27 %, (b) 27 %, (c) 36 %, (d) 45 %.

Figure S10. Size distribution of different Gd^{3+} doping concentration β -NaLuF₄: Gd/Yb/Er, β -NaYbF₄: Gd/Er and β -NaYF₄: Gd/Yb/Er.

Figure S11. Room-temperature fluorescence emission spectra of similar size powder β -NaYF₄: Gd/Yb/Er, β -NaLuF₄: Gd/Yb/Er and β -NaYbF₄: Gd/Er NPs under the 980 nm laser diode excitation (1.61 W/cm²).

Figure S12. Decay curves of 543 nm (${}^{4}S_{3/2}$ to ${}^{4}I_{15/2}$ transition of Er^{3+}) for similar size powder β -NaYF₄: Gd/Yb/Er, β -NaLuF₄: Gd/Yb/Er and β -NaYbF₄: Gd/Er NPs.

Figure S13. Histogram of the β -NaGdF₄: Yb/Er @ β -NaYF₄ core shell NPs size obtained under 12 mmol NaF, 15mL ODE, 15mL OA, and 290 °C for 1 h.

Sample	Phase	Average	Power density	Lifetime (µs)	Ref.
		particle	(nm)		
		size(nm)			
NaGdF4: Yb/Er@NaYF4	Hexagonal	~16.5	980	448.6	This work
NaGdF4: Yb/Er@NaYF4	Hexagonal	14	980	253	[1]

Table S2 Decay lifetime of typical upconversion nanoparticles.

Sample	Phase	Mean size	Power density	QY (%)	Ref.
		(nm)	(W/cm^2)		
NaGdF ₄ :Yb/Er@NaYF ₄ (powder)	Hexagonal	~16.5	0.3	0.22	This work
NaGdF4:Yb/Er@NaYF4(powder)	Hexagonal	11	2.5	0.051	[2]
NaGdF4:Yb/Er@CaF2(powder)	Hexagonal	16.6	25	3.7±0.4	[3]
NaGdF4:Yb/Er@NaGdF4(powder)	Hexagonal	16.0	25	2.6±1.4	[3]
NaYF4:Yb/Er@NaYF4(dispersion)	Hexagonal	30	150	0.3±0.1	[4]
NaYF4:Yb/Tm@NaYF4	Hexagonal	43	1.3	1.2	[5]

Table S3 Absolute quantum yield of typical upconverssion nanoparticles.

References

- [1] Chen D, Huang P. Dalton Transactions, 2014, 43(29):11299.
- [2] Lei L, Chen D, Huang P, et al. Nanoscale, 2013, 5(22):11298.
- [3] H. Dong, L.D. Sun, L.D. Li, R. Si, R. Liu and C.H. Yan, J. Am. Chem. Soc, 2017, 139, 18492-18495
- [4] Boyer J C, Veggel F C J M V. Nanoscale, 2010, 2(8):1417-1419.
- [5] Xu C T, Svenmarker P, Liu H, et al. ACS Nano, 2012, 6(6):4788.