1

Electronic Supplementary Informations

Theoretical investigations of the realization of sky-blue to blue TADF Materials via CH/N & H/CN substitution at the Diphenylsulphone acceptor

Aftab Hussain, Haiyan Yuan*, Wenliang Li*, and Jingping Zhang*

Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China

* Corresponding author. Tel.: +86 431 85099372; Fax: +86 431 85099521.

E-mail address: jpzhang@nenu.edu.cn.

Table of Contents

Table S1 Calculated structural parameters like bond lengths, bond angles and dihedral angles in the S0 and S1 optimizedgeometries using B3LYP/6-31g(d) and MPW1B95/6-31g(d) methods, respectively.	2
Table S2 HOMO-LUMO Energy gap (ΔE_{L-H}) in the S ₀ and S ₁ state optimized geometries using B3LYP/6-31g(d) and MPW1B95/6-31g(d) methods, respectively.	13
Table S3 Calculated absorption Wavelength (λ_{ab}) values and main configuration for the investigated molecules using TD-MPW1B95/6-31g(d) method based on optimized S0 geometry in Toluene media using PCM Model	13
Table S4 Calculated emission Wavelength (λ_{em}) values and main configuration for the investigated molecules using TD-MPW1B95/6-31g(d) method based on optimized S ₁ geometry in Toluene media using PCM Model	14
Table S5 Calculated $E_{VA}(S_1)$ and $E_{VA}(T_1)$ using various exchange-correlation functionals and 6-31G(d) basis set based on B3LYP optimized geometries, and calculated CT amount (q), optimal HF% (OHF), $E_{0-0}(^{3}LE)$, $E_{0-0}(^{1}CT)$ and $E_{0-0}(^{3}CT)$ of investigated molecules 1a-1e .	15
Figure S1 Dependence of $E_{VA}(S_1)$ and $E_{VA}(T_1)$ on the HF% in TD-DFT plotted on a log-log scale for 1a-1h.	16
Figure S2 The electron density plots of the HOMOs and LUMOs and the overlap between them in whole space for these investigated compounds in S_0 geometries	19

<u>1a</u>	S ₀	S ₁	Diff.
R(1,2)	1.462	1.469	0.007
R(1,4)	1.788	1.752	0.036
R(4,6)	1.393	1.413	0.020
R(4,14)	1.392	1.413	0.021
R(6,8)	1.390	1.380	0.010
R(8,10)	1.396	1.406	0.010
R(10,12)	1.395	1.406	0.011
R(12,14)	1.391	1.380	0.011
R(10,16)	1.427	1.437	0.010
R(16,18)	1.394	1.386	0.008
R(18,20)	1.403	1.410	0.007
R(20,22)	1.523	1.516	0.007
R(22,24)	1.523	1.515	0.008
R(24,26)	1.404	1.410	0.006
R(16,26)	1.393	1.384	0.009
R(18,28)	1.401	1.406	0.005
R(28,30)	1.385	1.382	0.003
R(30,32)	1.333	1.338	0.005
R(32,34)	1.331	1.329	0.002
R(20,34)	1.395	1.396	0.001
R(26,36)	1.402	1.407	0.005
R(36,38)	1.385	1.381	0.004
R(38,40)	1.333	1.338	0.005
R(40,42)	1.332	1.330	0.002
R(24,42)	1.395	1.396	0.001
<i>α</i> (1,3,2)	122.4	121.9	0.5
α(4,3,5)	104.4	105.5	1.1
α(3,4,6)	119.3	119.9	0.6
<i>α</i> (8,10,16)	119.7	119.8	0.1

Table S1 Calculated structural parameters like bond lengths, bond angles and dihedral angles in the S_0 and S_1 optimized geometries using B3LYP/6-31g(d) and MPW1B95/6-31g(d) methods, respectively.

<i>α</i> (10,16,18)	119.4	119.6	0.2
β(8,10,16,26)	92.6	90.4	2.2

1b	S ₀	S ₁	Diff.
R(1,2)	1.470	1.459	0.011
R(1,4)	1.822	1.760	0.062
R(4,6)	1.392	1.402	0.010
R(4,14)	1.328	1.348	0.020
R(6,8)	1.395	1.373	0.022
R(8,10)	1.396	1.409	0.013
R(10,12)	1.401	1.399	0.002
R(12,14)	1.335	1.313	0.022
R(10,16)	1.431	1.425	0.006
R(16,18)	1.405	1.385	0.020
R (16,26)	1.404	1.383	0.021
R (18,20)	1.408	1.403	0.005
R (18,30)	1.406	1.401	0.005
R (20,22)	1.532	1.510	0.022
R (20,42)	1.400	1.392	0.008
R (22,24)	1.532	1.510	0.022
R (22,44)	1.553	1.540	0.013
R (22,46)	1.553	1.540	0.013
R (24,26)	1.408	1.404	0.004
R (24,40)	1.400	1.391	0.009
R (26,28)	1.406	1.402	0.004
R (28,32)	1.389	1.378	0.011
R (30,34)	1.389	1.378	0.011
R (32,36)	1.338	1.334	0.004
R (34,38)	1.338	1.334	0.004
R (36,40)	1.337	1.326	0.011

]	R (38,42)	1.337	1.325	0.012
	<i>α</i> (2,1,3)	120.8	121.6	0.8
	<i>α</i> (4,1,5)	102.9	102.9	0.0
	<i>α</i> (1,4,6)	119.0	118.9	0.1
0	a(8,10,16)	121.2	121.1	0.1
α	(10,16,18)	119.4	119.6	0.2
β (8,10,16,26)	89.1	86.95	2.2

	S ₀	S_1	Diff.
R(1,2)	1.469	1.461	0.008
R(1,4)	1.803	1.744	0.059
R(4,6)	1.395	1.410	0.015
R(4,14)	1.398	1.406	0.008
R(6,8)	1.392	1.376	0.014
R(8,10)	1.399	1.395	0.004
R(10,12)	1.336	1.341	0.005
R(12,14)	1.336	1.318	0.018
R(10,16)	1.431	1.436	0.005
R(16,18)	1.403	1.380	0.023
R (16,26)	1.402	1.379	0.023
R (18,20)	1.407	1.404	0.003
R (18,30)	1.405	1.402	0.003
R (20,22)	1.532	1.509	0.023
R (20,42)	1.400	1.391	0.009
R (22,24)	1.532	1.509	0.023
R (22,44)	1.553	1.540	0.013
R (22,46)	1.552	1.541	0.011
R (24,26)	1.407	1.404	0.003
R (24,40)	1.400	1.391	0.009
R (26,28)	1.405	1.402	0.003

R (28 32)	1 388	1 377	0.011
R (20,52)	1.500	1.577	0.011
R (30,34)	1.388	1.378	0.010
R (32,36)	1.338	1.334	0.004
R (34,38)	1.338	1.334	0.004
R (36,40)	1.337	1.326	0.011
R (38,42)	1.337	1.326	0.011
<i>α</i> (2,1,3)	122.6	122.4	0.2
<i>α</i> (4,1,5)	104.7	105.2	0.5
α(1,4,6)	120.0	120.96	0.96
α(8,10,16)	119.4	119.9	0.5
α(10,16,18)	119.2	119.5	0.3
$\beta(8,10,16,26)$	86.7	91.4	4.7

1d	S ₀	S ₁	Diff.
R(1,2)	1.464	1.451	0.013
R(1,4)	1.839	1.773	0.066
R(4,6)	1.324	1.345	0.021
R(4,14)	1.329	1.345	0.016
R(6,8)	1.338	1.309	0.029
R(8,10)	1.397	1.406	0.009
R(10,12)	1.399	1.406	0.007
R(12,14)	1.336	1.309	0.027
R(10,16)	1.425	1.416	0.009
R(16,18)	1.407	1.388	0.019
R (16,26)	1.407	1.387	0.020
R (18,20)	1.407	1.402	0.005
R (18,30)	1.405	1.400	0.005
R (20,22)	1.531	1.510	0.021
R (20,42)	1.400	1.392	0.008
R (22,24)	1.531	1.509	0.022

R (22,44)	1.553	1.540	0.013
R (22,46)	1.552	1.540	0.012
R (24,26)	1.407	1.403	0.004
R (24,40)	1.400	1.391	0.009
R (26,28)	1.405	1.400	0.005
R (28,32)	1.389	1.378	0.011
R (30,34)	1.389	1.378	0.011
R (32,36)	1.338	1.332	0.006
R (34,38)	1.338	1.333	0.005
R (36,40)	1.336	1.326	0.010
R (38,42)	1.336	1.325	0.011
<i>α</i> (2,1,3)	121.9	122.3	0.4
<i>α</i> (4,1,5)	101.6	100.8	0.8
a(1,4,6)	115.7	116.8	1.1
a(8,10,16)	121.7	121.8	0.1
a(10,16,18)	119.4	119.9	0.5
β(8,10,16,26)	87.0	88.9	1.9

1e	S ₀	S ₁	Diff.
R(1,2)	1.468	1.460	0.008
R(1,4)	1.795	1.740	0.055
R(4,6)	1.397	1.408	0.011
R(4,14)	1.396	1.408	0.012
R(6,8)	1.332	1.318	0.014
R(8,10)	1.342	1.334	0.008
R(10,12)	1.341	1.333	0.008
R(12,14)	1.336	1.319	0.017
R(10,16)	1.415	1.435	0.020
R(16,18)	1.415	1.378	0.037
R (16,26)	1.415	1.377	0.038

R (18,20)	1.405	1.403	0.002
R (18,30)	1.406	1.401	0.005
R (20,22)	1.528	1.510	0.018
R (20,42)	1.402	1.391	0.011
R (22,24)	1.529	1.509	0.020
R (22,44)	1.553	1.541	0.012
R (22,46)	1.553	1.540	0.013
R (24,26)	1.406	1.404	0.004
R (24,40)	1.402	1.391	0.011
R (26,28)	1.406	1.401	0.005
R (28,32)	1.387	1.377	0.010
R (30,34)	1.387	1.377	0.010
R (32,36)	1.338	1.334	0.004
R (34,38)	1.339	1.334	0.005
R (36,40)	1.334	1.326	0.008
R (38,42)	1.334	1.325	0.009
α(2,1,3)	122.99	122.8	0.19
α(4,1,5)	104.98	105.2	0.22
a(1,4,6)	121.5	121.7	0.2
<i>α</i> (8,10,16)	116.6	115.5	1.1
α(10,16,18)	119.3	119.4	0.1
$\beta(8,10,16,26)$	59.5	93.1	33.6

1f	S ₀	S ₁	Diff.
R(1,2)	1.467	1.460	0.007
R(1,4)	1.814	1.763	0.051
R(4,6)	1.391	1.387	0.004
R(4,14)	1.410	1.425	0.015
R(6,8)	1.395	1.380	0.015
R(8,10)	1.396	1.406	0.010

R(1,2)	1.469	1.459	0.010
1g	S ₀	S ₁	Diff.
β(8,10,16,26)	84.7	88.2	3.5
α(10,16,18)	119.5	119.0	0.5
α(8,10,16)	120. 4	119.0	1.6
a(1,4,6)	116.7	116.6	0.1
a(4,1,5)	105.2	103.8	1.4
$\alpha(2,1,3)$	121.2	119.5	1.7
R (38,42)	1.337	1.326	0.011
R (36,40)	1.336	1.325	0.011
R (34,38)	1.338	1.334	0.004
R (32,36)	1.338	1.334	0.004
K (30,34)	1.389	1.378	0.011
K (28,32)	1.389	1.379	0.010
K (26,28)	1.406	1.402	0.004
K (24,40)	1.400	1.391	0.009
K (24,26)	1.407	1.404	0.003
K (22,46)	1.552	1.540	0.012
R (22,44)	1.553	1.541	0.012
K (22,24)	1.532	1.510	0.022
K (20,42)	1.400	1.392	0.008
K(20,22)	1.532	1.309	0.023
K (18,30)	1.405	1.402	0.003
K(18,20)	1.408	1.403	0.003
K(10,20)	1.400	1.383	0.025
K(10,18)	1.405	1.382	0.023
K(10,10)	1.432	1.432	0.000
K(12,14) R(10,14)	1.405	1.401	0.002
R(10,12) R(12,14)	1.397	1.3/3	0.022
P(10, 12)	1 207	1 275	0.022

R(1,4)	1.808	1.759	0.049
R(4,6)	1.395	1.411	0.016
R(4,14)	1.392	1.387	0.005
R(6,8)	1.395	1.379	0.016
R(8,10)	1.396	1.390	0.006
R(10,12)	1.413	1.424	0.011
R(12,14)	1.402	1.390	0.012
R(10,16)	1.428	1.426	0.002
R(16,18)	1.407	1.385	0.022
R (16,26)	1.406	1.383	0.023
R (18,20)	1.406	1.403	0.003
R (18,30)	1.404	1.401	0.003
R (20,22)	1.532	1.509	0.023
R (20,42)	1.400	1.392	0.008
R (22,24)	1.532	1.509	0.023
R (22,44)	1.552	1.539	0.013
R (22,46)	1.553	1.542	0.011
R (24,26)	1.406	1.403	0.003
R (24,40)	1.400	1.392	0.008
R (26,28)	1.405	1.401	0.004
R (28,32)	1.389	1.377	0.012
R (30,34)	1.389	1.378	0.011
R (32,36)	1.332	1.334	0.002
R (34,38)	1.337	1.334	0.003
R (36,40)	1.337	1.325	0.012
R (38,42)	1.336	1.325	0.011
<i>α</i> (2,1,3)	122.7	122.4	0.3
<i>α</i> (4,1,5)	104.7	105.4	0.7
α(1,4,6)	119.2	119.9	0.7
a(8,10,16)	120. 4	121.1	0.7
a(10,16,18)	119.3	119.1	0.2

$\beta(8,10,16,26)$

89.1

91.9

1h	S ₀	S ₁	Diff.
R(1,2)	1.461	1.454	0.007
R(1,4)	1.827	1.764	0.063
R(4,6)	1.407	1.409	0.002
R(4,14)	1.410	1.426	0.016
R(6,8)	1.407	1.385	0.022
R(8,10)	1.392	1.400	0.008
R(10,12)	1.395	1.381	0.014
R(12,14)	1.402	1.392	0.010
R(10,16)	1.427	1.428	0.001
R(16,18)	1.407	1.384	0.023
R (16,26)	1.409	1.384	0.025
R (18,20)	1.407	1.403	0.004
R (18,30)	1.405	1.401	0.004
R (20,22)	1.531	1.508	0.023
R (20,42)	1.400	1.392	0.008
R (22,24)	1.532	1.509	0.023
R (22,44)	1.553	1.541	0.012
R (22,46)	1.552	1.540	0.012
R (24,26)	1.407	1.404	0.003
R (24,40)	1.400	1.392	0.008
R (26,28)	1.405	1.402	0.003
R (28,32)	1.389	1.379	0.010
R (30,34)	1.389	1.378	0.011
R (32,36)	1.338	1.335	0.003
R (34,38)	1.337	1.334	0.003
R (36,40)	1.336	1.325	0.011
R (38,42)	1.336	1.325	0.011

$a(2,1,3)$ 122.2 121.1 1.1 $a(4,1,5)$ 105.3 104.5 0.8 $a(1,4,6)$ 119.8 120.2 0.4 $a(8,10,16)$ 120.3 119.5 0.8 $a(10,16,18)$ 119.4 118.9 0.5 $\beta(8,10,16,26)$ 81.8 88.3 6.5	$\alpha(2, 1, 2)$	122.2	121.1	1 1
$\alpha(4,1,5)$ 105.3104.50.8 $\alpha(1,4,6)$ 119.8120.20.4 $\alpha(8,10,16)$ 120.3119.50.8 $\alpha(10,16,18)$ 119.4118.90.5 $\beta(8,10,16,26)$ 81.888.36.5	$\alpha(2,1,3)$	122.2	121.1	1.1
$\alpha(1,4,6)$ 119.8120.20.4 $\alpha(8,10,16)$ 120.3119.50.8 $\alpha(10,16,18)$ 119.4118.90.5 $\beta(8,10,16,26)$ 81.888.36.5	$\alpha(4,1,5)$	105.3	104.5	0.8
$\alpha(8,10,16)$ 120.3119.50.8 $\alpha(10,16,18)$ 119.4118.90.5 $\beta(8,10,16,26)$ 81.888.36.5	α(1,4,6)	119.8	120.2	0.4
$\alpha(10,16,18)$ 119.4118.90.5 $\beta(8,10,16,26)$ 81.888.36.5	<i>α</i> (8,10,16)	120.3	119.5	0.8
$\beta(8,10,16,26)$ 81.8 88.3 6.5	α(10,16,18)	119.4	118.9	0.5
	$\beta(8,10,16,26)$	81.8	88.3	6.5

1i	S ₀	S ₁	Diff.
R(1,2)	1.467	1.459	0.008
R(1,4)	1.812	1.757	0.055
R(4,6)	1.392	1.399	0.007
R(4,14)	1.392	1.400	0.008
R(6,8)	1.404	1.384	0.020
R(8,10)	1.409	1.413	0.004
R(10,12)	1.410	1.414	0.004
R(12,14)	1.403	1.383	0.020
R(10,16)	1.421	1.420	0.001
R(16,18)	1.411	1.387	0.024
R (16,26)	1.410	1.385	0.025
R (18,20)	1.405	1.402	0.003
R (18,30)	1.404	1.400	0.004
R (20,22)	1.531	1.508	0.023
R (20,42)	1.400	1.392	0.008
R (22,24)	1.531	1.508	0.023
R (22,44)	1.553	1.541	0.012
R (22,46)	1.553	1.541	0.012
R (24,26)	1.405	1.402	0.003
R (24,40)	1.400	1.392	0.008
R (26,28)	1.404	1.400	0.004
R (28,32)	1.389	1.377	0.012

R (30,34)	1.389	1.378	0.011
R (32,36)	1.337	1.334	0.003
R (34,38)	1.337	1.334	0.003
R (36,40)	1.336	1.325	0.011
R (38,42)	1.336	1.325	0.011
<i>α</i> (2,1,3)	123.2	123.1	0.1
<i>α</i> (4,1,5)	104.7	105.7	1.0
α(1,4,6)	118.9	119.4	0.5
a(8,10,16)	120.5	120.1	0.4
α(10,16,18)	119.3	119.2	0.1
β(8,10,16,26)	88.93	88.99	0.06

Table S2 HOMO-LUMO Energy gap (ΔE_{L-H}) in the S₀ and S₁ state optimized geometries using B3LYP/6-31g(d) and MPW1B95/6-31g(d) methods, respectively.

Sr. No.		S ₀ geometry			S ₁ geometry			
	E _{HOMO}	$E_{\rm LUMO}$	$\Delta E_{\text{L-H}}$	$E_{\rm HOMO}$	$E_{\rm LUMO}$	$\Delta E_{\text{L-H}}$		
1a	-6.31	-2.09	4.22	-6.28	-2.44	3.84		
1b	-6.14	-2.19	3.95	-6.52	-2.41	4.11		
1c	-6.10	-2.64	3.46	-6.44	-2.61	3.83		
1d	-6.30	-2.46	3.84	-6.75	-3.33	3.42		
1e	-6.24	-2.94	3.30	-6.49	-3.08	3.41		
1f	-6.20	-2.83	3.37	-6.48	-2.76	3.72		
1g	-6.27	-2.93	3.34	-6.59	-2.80	3.79		
1h	-6.43	-3.35	3.08	-6.75	-3.33	3.42		
1i	-6.49	-3.53	2.96	-6.82	-3.41	3.41		

Table S3 Calculated absorption Wavelength (λ_{ab}) values and main configuration for the investigated molecules using TD-MPW1B95/6-31g(d) method based on optimized S₀ geometry in Toluene media using PCM Model

Sr. No.	Excited	Main Configuration/	Wavelength	$E_{\mathbf{S}} @ \mathbf{S}_0$	Oscillator
	State	Transition (%T=T*100)	$\lambda_{ab}(nm)$	(eV)	Strength (f)
1 a	S_1	HOMO→LUMO (87%)	336	3.6914	0.0002

f_{\max}	S_6	H-1→L+4 (47%),	270	4.5847	0.2594
		HOMO→L+5 (40%)			
1b	\mathbf{S}_1	HOMO→LUMO (62%)	347	3.5761	0.0011
		H-1→L+1 (34%)			
f_{\max}	S_7	H-1→L+5 (47%)	271	4.5703	0.2676
		HOMO→L+4 (48%)			
1c	\mathbf{S}_1	HOMO→LUMO (85%)	376	3.2959	0.0086
		H-1→L+1, 2 (5%, 9%)			
f_{\max}	S ₁₂	H-1→L+5 (23%)	269	4.6105	0.1242
		HOMO→L+4 (22%)			
1d	\mathbf{S}_1	H-1→LUMO (45%)	361	3.4330	0.0034
		HOMO→L+2 (40%)			
f_{\max}	S_9	H-1→L+4 (35%)	271	4.5785	0.1754
		HOMO→L+5 (34%)			
1e	\mathbf{S}_1	HOMO→LUMO (86%)	400	3.0969	0.2640
		H-1→L+3 (12%)			
$f_{\rm max}$	S_{19}	HOMO→L+5 (41%)	266	4.6582	0.1702
		H-1→L+4 (37%)			
1f	\mathbf{S}_1	H-1→LUMO (65%)	396	3.1292	0.0065
		HOMO→L+1 (32%)			
f_{\max}	S_{15}	H-1→L+4 (42%)	270	4.5890	0.2423
		HOMO→L+5 (43%)			
1g	\mathbf{S}_1	HOMO->LUMO (74%)	401	3.0899	0.0002
		H-1->L+1 (20%)			
f_{\max}	S_{16}	H-1->L+5 (46%) HOMO-	268	4.6222	0.2419
		>L+4 (46%)			
1h	\mathbf{S}_1	H-1→LUMO (67%)	439	2.8260	0.0182
		HOMO→L+1 (29%)			
f_{\max}	S ₁₉	H-7→L+3 (22%)	285	4.3464	0.0222
		H-6→L+2 (60%)			
1i	\mathbf{S}_1	HOMO->LUMO (77%)	456	2.7163	0.0001

		H-1->L+3 (20%)				
f_{\max}	S ₁₉	H-7->L+2 (26%)	2	295	4.2025	0.0092
		H-6->L+1 (73%)				

Table S4 Calculated emission Wavelength (λ_{em}) values and main configuration for the investigated molecules using TD-MPW1B95/6-31g(d) method based on optimized S₁ geometry in Toluene media using PCM Model.

Sr. No.	Excited	Main Configuration/ Transition	Wavelength	$E_{\rm S}@{\rm S}_0$	Oscillator
	State	(%T=T*100)	$\lambda_{em}(nm)$	(eV)	Strength (f)
1 a	S_1	$LUMO \rightarrow HOMO -1 (90)$	366	3.39	0.0028
f_{\max}	S_{17}	LUMO→H-10 (93)	249	4.98	0.6774
1b	\mathbf{S}_1	LUMO \rightarrow HOMO (87)	397	3.12	0.0052
f_{\max}	S ₁₂	L+4→H-1 (48), L+5→H (47)	272	4.56	0.2190
1c	\mathbf{S}_1	LUMO \rightarrow HOMO (89)	416	2.98	0.0001
f_{\max}	S ₁₇	L+4→H-1 (32), L+3→H (21)	270	4.59	0.1361
1d	\mathbf{S}_1	LUMO \rightarrow HOMO (88)	447	2.78	0.0001
f_{\max}	S ₂₀	L+4→H-1 (37), L+4→H (37)	271	4.57	0.1345
1e	\mathbf{S}_1	$LUMO \rightarrow H-1 (89)$	482	2.57	0.0025
f_{\max}	S ₂₀	L+1→H-13 (27), L+1→H-5 (36)	276	4.49	0.0031
1f	\mathbf{S}_1	LUMO \rightarrow HOMO (70)	437	2.84	0.0003
f_{\max}	S_{11}	L→H-6 (78), L+1→H-7 (20)	289	4.29	0.0199
1g	\mathbf{S}_1	LUMO \rightarrow HOMO (77)	432	2.87	0.0002
f_{\max}	S_{18}	L+4→H (43), L+5→H-1 (43)	270	4.60	0.2131
1h	\mathbf{S}_1	$LUMO \rightarrow H-1 (73)$	494	2.51	0.0009
f_{\max}	S ₁₃	L→H-6 (83), L+1→H-7 (16)	318	3.90	0.0068
1i	\mathbf{S}_1	LUMO \rightarrow HOMO (81)	497	2.49	0.0002
f_{\max}	S_{17}	L+1→H-4 (68), L+2→H-5 (21)	302	4.10	0.0036

Table S5 Calculated $E_{VA}(S_1)$ and $E_{VA}(T_1)$ using various exchange-correlation functionals and 6-31G(d) basis set based on B3LYP optimized geometries, and calculated CT amount (q), optimal HF% (OHF), $E_{0-0}(^{3}LE)$, $E_{0-0}(^{1}CT)$ and $E_{0-0}(^{3}CT)$ of investigated molecules **1a-1e**.

8						
Parameter	Functionals	1 a	1b	1c	1d	1e

	B3LYP	3.2664	3.2739	2.9611	3.1282	2.8064
	PBE1PBE	3.4393	3.4387	3.1413	3.2998	2.9740
$E_{VA}(S_1)$	MPWB95	3.5962	3.5761	3.2959	3.4330	3.0969
eV	BMK	3.9372	3.8833	3.6213	3.7140	3.3508
	M062X	4.1448	4.0679	3.8457	3.8883	3.5521
	M06HF	4.7723	4.4685	4.4807	4.3071	4.0925
	B3LYP	3.2548	3.2224	2.9410	3.0382	2.6252
	PBE1PBE	3.2943	3.2839	3.1101	3.1624	2.7471
$E_{VA}(T_1)$	MPWB95	3.4944	3.4694	3.2695	3.3173	2.8833
eV	BMK	3.6379	3.6420	3.5841	3.5478	3.1055
	M062X	3.8103	3.8157	3.8040	3.7084	3.3120
	M06HF	4.1166	4.0986	4.1430	3.9389	3.7979
CT amount (<i>q</i>)		0.8544	0.8565	0.8484	0.8816	0.7852
Optimal HF%		36	36	36	37	33
$E_{\rm VA}$ (S ₁ , OHF) (eV)		3.75	3.72	3.44	3.59	3.16
E_{0-0} (¹ CT) (eV)		3.51	3.48	3.20	3.35	2.92
$E_{0-0}(^{3}\mathrm{CT}) (\mathrm{eV})$		3.50	3.42	3.18	3.25	2.72
$E_{0-0}(^{3}\text{LE}) (\text{eV})$		3.15	3.14	3.13	3.07	2.76

Figure S1 Dependence of $E_{VA}(S_1)$ and $E_{VA}(T_1)$ on the HF% in TD-DFT plotted on a log-log scale for 1a-1h.

Figure S2 The electron density plots of the HOMOs and LUMOs and the overlap between them in whole space for these investigated compounds in S_0 geometries.