Electronic Supplementary Information (ESI)

Terahertz spectroscopic characterization of Ge2Sb2Te5 phase change material toward photonics applications

Kotaro Makino^{1,*}, Kosaku Kato², Yuta Saito¹, Paul Fons¹, Alexander V. Kolobov^{1,3}, Junji Tominaga¹, Takashi Nakano¹, and Makoto Nakajima²

¹Nanoelectronics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8562, Japan

²Institute of Laser Engineering (ILE), Osaka University, Suita, Osaka, 565-0871, Japan

³Department of Physical Electronics, Faculty of Physics, Herzen State Pedagogical University, St. Petersburg, 191186, Russia

*k-makino@aist.go.jp

Figure S1. Time-domain signals for the Al₂O₃ substrate and the substrate which is covered with ZnS-SiO₂ protection layer. It was confirmed that the presence of the cover layer is negligibly small.

Figure S2. Spectra of real and imaginary part of index of reflection (n, κ) for the substrate and the substrate with cover layer obtained by THz-TDS results shown in Fig. S1. To betain the index of reflection, the thickness of the cover layer is omitted. Curves of *n* and κ for only substrate and substrate + cover are almost overlapped, meaning that the presence of the cover layer is segregable small for the current results.