Electronic supplementary information (ESI)

Large magnetocaloric effect in two hybrid Gd-complexes: the synergy of

inorganic and organic ligands towards excellent cryo-magnetic coolants

Jin-Hua Li, Ai-Ju Liu, Yu-Juan Ma, Song-De Han*, Ji-Xiang Hu and Guo-Ming

Wang*

College of Chemistry and Chemical Engineering, Qingdao University, Shandong

266071, P. R. China.

*Author to whom correspondence should be addressed. E-mail: <u>hansongde@yeah.net;</u> <u>gmwang_pub@163.com</u>

Fig. S1 TG plot of 1 and 2.

Table S1. Selected bond lengths (A) and angles (^o) for I					
C(1)-O(4)	1.239(7)	Gd(1)-O(9)	2.416(4)		
C(1)-O(3)	1.246(7)	Gd(1)-O(3)	2.426(4)		
C(1)-C(2)	1.538(9)	Gd(1)-O(4)#3	2.428(4)		
C(2)-O(2)	1.246(7)	Gd(1)-O(1)	2.438(4)		
C(2)-O(1)	1.256(7)	O(5)-S(1)	1.468(5)		
Gd(1)-O(7)#1	2.338(4)	O(6)-S(1)	1.452(5)		
Gd(1)-O(5)	2.345(5)	O(7)-S(1)	1.478(4)		
Gd(1)-O(8)#2	2.353(5)	O(8)-S(1)	1.462(5)		
Gd(1)-O(2)#3	2.414(4)				
O(7)#1-Gd(1)-O(5)	79.24(15)	O(9)-Gd(1)-O(3)	82.85(16)		
O(7)#1-Gd(1)-O(8)#2	75.87(15)	O(7)#1-Gd(1)-O(4)#3	89.49(15)		
O(5)-Gd(1)-O(8)#2	130.76(19)	O(5)-Gd(1)-O(4)#3	75.88(17)		
O(7)#1-Gd(1)-O(2)#3	84.52(15)	O(8)#2-Gd(1)-O(4)#3	144.32(15)		
O(5)-Gd(1)-O(2)#3	139.71(16)	O(2)#3-Gd(1)-O(4)#3	67.29(13)		
O(8)#2-Gd(1)-O(2)#3	78.89(16)	O(9)-Gd(1)-O(4)#3	144.88(15)		
O(7)#1-Gd(1)-O(9)	100.68(15)	O(3)-Gd(1)-O(4)#3	106.74(15)		
O(5)-Gd(1)-O(9)	73.23(17)	O(7)#1-Gd(1)-O(1)	147.71(15)		
O(8)#2-Gd(1)-O(9)	70.63(16)	O(5)-Gd(1)-O(1)	70.74(15)		
O(2)#3-Gd(1)-O(9)	146.54(15)	O(8)#2-Gd(1)-O(1)	133.60(14)		
O(7)#1-Gd(1)-O(3)	146.59(16)	O(2)#3-Gd(1)-O(1)	110.90(14)		
O(5)-Gd(1)-O(3)	132.45(15)	O(9)-Gd(1)-O(1)	82.13(15)		
O(8)#2-Gd(1)-O(3)	74.09(15)	O(3)-Gd(1)-O(1)	65.63(14)		
O(2)#3-Gd(1)-O(3)	75.69(15)	O(4)#3-Gd(1)-O(1)	72.16(14)		

. . . 1 1 (%) 1 1 $a(0) \mathbf{f}_{c}$

Symmetry codes: #1: -x, -y+1, -z+2; #2: x+1, y, z; #3: -x+1/2, y+1/2, -z+3/2; #4: -x+1/2, y-1/2, -z+3/2; #5: x-1, y, z.

Table S2.	Selected	bond le	engths ((Å) and	angles ((0)	for 2

Gd(1)-O(1)#1	2.416(5)	Gd(1)-O(2)#1	2.467(3)
Gd(1)-O(1)	2.416(5)	Gd(1)-O(2)#4 Gd(1)-	2.467(3)
Gd(1)-O(4)	2.422(9)	O(2)#5	2.467(3)
Gd(1)-O(3)#2	2.431(3)	O(1)-C(1)	1.252(8)
Gd(1)-O(3)#1	2.431(3)	O(2)-C(2)	1.28(2)
Gd(1)-O(3)#3	2.431(3)	O(3)-C(2)	1.266(9)
Gd(1)-O(3)	2.431(3)	O(3)-C(2)#6	1.266(9)
Gd(1)-O(2)	2.467(3)	C(1)-C(1)#7	1.53(2)
O(1)#1-Gd(1)-O(1)	66.9(3)	O(3)#3-Gd(1)-O(2)	113.6(3)
O(1)#1-Gd(1)-O(4)	146.56(13)	O(3)-Gd(1)-O(2)	52.4(3)
O(1)-Gd(1)-O(4)	146.56(13)	O(1)#1-Gd(1)-O(2)#1	76.5(3)
O(1)#1-Gd(1)-O(3)#2	77.01(11)	O(1)-Gd(1)-O(2)#1	88.1(3)
O(1)-Gd(1)-O(3)#2	132.00(11)	O(4)-Gd(1)-O(2)#1	99.2(3)
O(4)-Gd(1)-O(3)#2	74.56(2)	O(3)#2-Gd(1)-O(2)#1	113.6(3)
O(1)#1-Gd(1)-O(3)#1	77.01(11)	O(3)#1-Gd(1)-O(2)#1	52.4(3)
O(1)-Gd(1)-O(3)#1	132.00(11)	O(3)#3-Gd(1)-O(2)#1	134.0(3)
O(4)-Gd(1)-O(3)#1	74.56(2)	O(3)-Gd(1)-O(2)#1	71.6(3)
O(3)#2-Gd(1)-O(3)#1	62.7(2)	O(1)#1-Gd(1)-O(2)#4	76.5(3)
O(1)#1-Gd(1)-O(3)#3	132.01(11)	O(1)-Gd(1)-O(2)#4	88.1(3)
O(1)-Gd(1)-O(3)#3	77.01(11)	O(4)-Gd(1)-O(2)#4	99.2(3)
O(4)-Gd(1)-O(3)#3	74.56(2)	O(3)#2-Gd(1)-O(2)#4	52.4(3)
O(3)#2-Gd(1)-O(3)#3	108.4(2)	O(3)#1-Gd(1)-O(2)#4	113.6(3)
O(3)#1-Gd(1)-O(3)#3	149.12(5)	O(3)#3-Gd(1)-O(2)#4	71.6(3)
O(1)#1-Gd(1)-O(3)	132.01(11)	O(3)-Gd(1)-O(2)#4	134.0(3)
O(1)-Gd(1)-O(3)	77.01(11)	O(2)-Gd(1)-O(2)#4	161.6(6)
O(4)-Gd(1)-O(3)	74.56(2)	O(2)#1-Gd(1)-O(2)#4	152.0(6)
O(3)#2-Gd(1)-O(3)	149.12(5)	O(1)#1-Gd(1)-O(2)#5	88.1(3)
O(3)#1-Gd(1)-O(3)	108.4(2)	O(1)-Gd(1)-O(2)#5	76.5(3)
O(3)#3-Gd(1)-O(3)	62.7(2)	O(4)-Gd(1)-O(2)#5	99.2(3)
O(1)#1-Gd(1)-O(2)	88.1(3)	O(3)#2-Gd(1)-O(2)#5	71.6(3)
O(1)-Gd(1)-O(2)	76.5(3)	O(3)#1-Gd(1)-O(2)#5	134.0(3)
O(4)-Gd(1)-O(2)	99.2(3)	O(3)#3-Gd(1)-O(2)#5	52.4(3)
O(3)#2-Gd(1)-O(2)	134.0(3)	O(3)-Gd(1)-O(2)#5	113.6(3)
O(3)#1-Gd(1)-O(2)	71.6(3)	O(2)#1-Gd(1)-O(2)#5	161.6(6)

Symmetry codes: #1: -x+1, y, z; #2: x+1/2, -y+1/2, -z+1; #3: -x+1/2, -y+1/2, -z+1; #4: - x+1, y, z+1; #5: x, y, z+1; #6: -x+1/2, -y+1/2, -z; #7: -x+1, -y, -z+1; #8: x, y, z-1; #9: x, -y, -z+1.

Commission	D	$-\Delta S_{\rm m}^{\rm max}$	
Complex	D	[J kg ⁻¹ K ⁻¹]	[mJ cm ⁻³ K ⁻¹]
[Gd(HCOO) ₃] ¹	3D	55.9	216
2 in this work	3D	50.7	165
$[Gd(HCOO)(SO_4)(H_2O)]^2$	3D	49.9	190
$[Gd(C_2O_4)(H_2O)_3Cl]^3$	2D	48.0	144
$[Gd(OAc)_{3}(H_{2}O)_{0.5}]^{4}$	1D	47.7	106
$[Gd_7(CDA)_6(HCOO)_3(\mu_3-OH)_6(H_2O)_8]_n^5$	2D	47.3	129
$[Gd(HCOO)(C_8H_4O_4)]^6$	2D	47.0	125
$[Gd_2(C_2O_4)_3(H_2O)_6 \cdot 0.6H_2O]^7$	2D	46.6	118
$[Gd_{24}(dmc)_{36}(\mu_4-CO_3)_{18}(\mu_3-H_2O)_2] \cdot 6H_2O^8$	0D	46.1	90
[Gd(HCOO)(OAc) ₂ (H ₂ O) ₂] ⁹	1D	45.9	110
[Gd(OAc) ₃ (MeOH)] ⁴	1D	45.0	97
$[Gd_2(oda)_2(ox)(H_2O)_6]_n^{10}$	1D	44.6	120
$[Gd(C_4O_4)(C_2O_4)_{0.5}(H_2O_2)^{-11}]^{11}$	3D	44.0	128
[Gd(cit)(H ₂ O)] ¹²	2D	43.6	115
$\{[Gd(OAc)_3(H_2O)_2]\}_2 \cdot 4H_2O^{13}$	0D	41.6	83
${[Gd_2(IDA)_3] \cdot 2H_2O}^{14}$	3D	40.6	101
	F 23	D D'	

Table S3. Comparison of $-\Delta S_m^{max}$ (larger than 40.0 J kg⁻¹ K⁻¹) between **2** and some selected Gd-complexes fabricated by organic ligands

 $-\Delta S_{\rm m}^{\rm max} \,[{\rm mJ} \,\,{\rm cm}^{-3} \,\,{\rm K}^{-1}] = -\Delta S_{\rm m}^{\rm max} \,[{\rm J} \,\,{\rm kg}^{-1} \,\,{\rm K}^{-1}] * \rho_{\rm cald}[{\rm g} \,\,{\rm cm}^{-3}] \qquad {\rm D}: \,{\rm Dimensionality}$

References:

- G. Lorusso, J. W. Sharples, E. Palacios, O. Roubeau, E. K. Brechin, R. Sessoli, A. Rossin, F. Tuna, E. J. L. McInnes, D. Collison and M. Evangelisti, *Adv. Mater.*, 2013, 25, 4653-4656.
- 2. L.-Y. Xu, J.-P. Zhao, T. Liu and F.-C. Liu, Inorg. Chem., 2015, 54, 5249-5256.
- 3. Y. Meng, Y.-C. Chen, Z.-M. Zhang, Z.-J. Lin and M.-L. Tong, Inorg. Chem., 2014, 53, 9052-9057.
- 4. F.-S. Guo, J.-D. Leng, J.-L. Liu, Z.-S. Meng and M.-L. Tong, Inorg. Chem., 2012, 51, 405-413.
- 5. T.-Q. Song, J. Dong, A.-F. Yang, X.-J. Che, H.-L. Gao, J.-Z. Cui and B. Zhao, Inorg. Chem., 2018, 57, 3144-3150.
- 6. R. Sibille, T. Mazet, B. Malaman and M. François, Chem. Eur. J., 2012, 18, 12970-12973.
- 7. R. Sibille, E. Didelot, T. Mazet, B. Malaman and M. François, APL Mater., 2014, 2, 124402.
- 8. L.-X. Chang, G. Xiong, L. Wang, P. Cheng and B. Zhao, Chem. Commun., 2013, 49, 1055-1057.
- 9. G. Lorusso, M. A. Palacios, G. S. Nichol, E. K. Brechin, O. Roubeau and M. Evangelisti, *Chem. Commun.*, 2012, 48, 7592-7594.
- T.-F. Zheng, S.-L. Yao, C. Cao, S.-J. Liu, H.-K. Hu, T. Zhang, H.-P. Huang, J.-S. Liao, J.-L. Chen and H.-R. Wen, *New J. Chem.*, 2017, 41, 8598-8603.
- 11. S. Biswas, H. S. Jena, A. Adhikary and S. Konar, Inorg. Chem., 2014, 53, 3926-3928.
- 12. S.-J. Liu, C.-C. Xie, J.-M. Jia, J.-P. Zhao, S.-D. Han, Y. Cui, Y. Li and X.-H. Bu, *Chem. Asian J.*, 2014, 9, 1116-1122.
- 13. M. Evangelisti, O. Roubeau, E. Palacios, A. Camón, T. N. Hooper, E. K. Brechin and J. J. Alonso, *Angew. Chem. Int. Ed.*, 2011, **50**, 6606-6609.
- 14. J.-M. Jia, S.-J. Liu, Y. Cui, S.-D. Han, T.-L. Hu and X.-H. Bu, Cryst. Growth Des., 2013, 13, 4631-4634.