Electronic Supplementary Information (ESI)

Improving photovoltaic performance by installing alkyl chains perpendicular to π -conjugated plane of organic dye for dye-sensitized solar cells

Hongjin Chen¹, Guangyu Lyu¹, Youfeng Yue², Tingwei Wang¹, Dong-Ping Li^{3*}, Heng Shi¹, Jieni Xing¹, Junyan Shao¹, Rui Zhang^{1*}, and Jian Liu^{1*}

 College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab of Biomassbased Green Fuels and Chemicals, Nanjing 210037, P. R. China
Electronics and Photonics Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi 305-8565, Tsukuba, Japan
Department of Chemistry, Nanchang University, Nanchang 330031, PR China

E-mail: liu.jian@njfu.edu.cn, zhangrui@njfu.edu.cn, nculdp@126.com

General

All chemicals and reagents were used as received from chemical companies without further purification. Column chromatography was performed using with silicagel as a stationary phase. Cyclic voltammetry (CV) was performed on a CH Instruments 624D potentiostat/galvanostat system. All CV measurements were carried out in anhydrous CH₂Cl₂ containing 0.1 M TBAHFP as a supporting electrolyte, purging with argon prior to conduct the experiment. Platinum electrode was used as a working electrode, Ag/AgNO₃ in saturated KNO₃(aq.) as a reference electrode, and a platinum wire as a counter electrode. UV-Vis spectra were measured in CH₂Cl₂ solution or TiO₂ film using UV-3600 Spectrophotometer (SHIMADZU). Mass spectra were measured on a Shimadzu Biotech matrix-assisted laser desorption ionization (MALDI) mass spectrometer. The ¹H- and ¹³C-NMR measurements were performed by a DRX-400 or DRX-600 spectrometer (Bruker BioSpin). Geometry optimization and Molecular orbital distributions of three dyes were performed using B3LYP functional and 6-31G (d,p) basis set implemented in the Gaussian 09 program package.¹

Cell Fabrication and characterization

The device fabrication was performed as follows. A double-layered TiO₂ film as photoanode containing 11 μ m main transparent layer with ca. 20 nm sized titania particles and a 5 μ m scattering layer with ca. 400 nm sized titania particles were screen printed on the fluorine-doped tin oxide (FTO) conducting glass substrate. The double-layered film were heated to 520 °C and sintered for 1 hour and then cooled to 80 °C, following additional treatment with 0.1 M HCl aqueous solution. The resuluted TiO₂ films were washed, dried and then dipped into a 3 × 10⁻⁴ M acetonitrile/n-BuOH (1/1, v/v) solution of the corresponding sensitizer, or a mixture of sensitizer (0.3 mM) and DCA (20 mM) in CH₃CN/n-BuOH (1/1, v/v) for 40 h. Afterwards, the dyeloaded TiO₂ film and a platinum coated conducting glass were assembled into a DSSC of a sandwich type and sealed by heating the Surlyn spacer (40 mm thick). An electrolyte consisting of 0.6 M dimethylpropylimidazolium iodide, 0.05 M I₂, 0.1 M LiI and 0.5 M TBP in acetonitrile was injected into the spacer from the counterelectrode side through a pre-drilled hole, and then the hole was sealed with a Bynel sheet and a thin-glass-slide cover by heating.

The *I-V* characteristics were carried out by using a black metal mask with an aperture area of 0.2304 cm⁻² under standard AM 1.5 sunlight, 100 mW·cm⁻² (WXS-155S-10: Wacom Denso Co. Japan). Monochromatic IPCE spectra were determined with monochromatic incident light of 1×1016 photons per cm² under 100 mW·cm⁻² in director current mode (CEP-2000BX, Bunko-Keiki). The IMVS were characterized with a potentiostat (Solartron1287) equipped with a frequency response analyzer (Solartron1255B) at an open-circuit condition based on a monochromatic illumination (420 nm) controlled by a Labview system to obtain the photovoltaic response induced by the modulated light.

Fig. S1 Normalized UV-vis and emission spectra of dyes LJ-7, LJ-8 and LJ-9 in CH₂Cl₂.

Fig. S2 Energy-level diagram of dyes **LJ-7**, **LJ-8**, and **LJ-9**, the electrolyte and TiO₂, E_{CB} : energy level of conduction band of TiO₂; ΔG_1 : driving force for electron injection; ΔG_2 : driving force for regeneration of the oxidized dyes.

DFT Calculation

Fig. S3 Optimized ground-state geometries and dihedral angles between the π -planes of LJ-7, LJ-8 and LJ-9.

Fig. S4 The HOMO and LUMO of dyes LJ-7, LJ-8 and LJ-9 optimized at B3LYP/6-31G** level.

Fig. S5 The power conversion efficiency statistics of DSSCs based on dyes **LJ-7**, **LJ-8** and **LJ-9** with/without DCA coadsorption. (12 devices for each sample).

Fig. S6 IPCE spectra and the integrated J_{SC} of DSSCs based on dyes LJ-7, LJ-8 and LJ-9 with/without DCA coadsorption.

Fig. S8 ¹³C NMR spectra of compound 4a.

Fig. S9 ¹H NMR spectra of compound 4b.

Fig. S10 ¹³C NMR spectra of compound 4b.

Fig. S11 ¹H NMR spectra of compound 7.

Fig. S12 ¹³C NMR spectra of compound 7.

Fig. S14 ¹³C NMR spectra of dye LJ-7.

Fig. S16 ¹³C NMR spectra of dye LJ-8.

Fig. S18 ¹³C NMR spectra of dye LJ-9.

Reference

M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox, Gaussian 09, Revision A.02; Gaussian, Inc.: Wallingford, CT, 2009.