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General 

All chemicals and reagents were used as received from chemical companies without 

further purification. Column chromatography was performed using with silicagel as a 

stationary phase. Cyclic voltammetry (CV) was performed on a CH Instruments 624D 

potentiostat/galvanostat system. All CV measurements were carried out in anhydrous 

CH2Cl2 containing 0.1 M TBAHFP as a supporting electrolyte, purging with argon 

prior to conduct the experiment. Platinum electrode was used as a working electrode, 

Ag/AgNO3 in saturated KNO3(aq.) as a reference electrode, and a platinum wire as a 

counter electrode. UV-Vis spectra were measured in CH2Cl2 solution or TiO2 film 

using UV-3600 Spectrophotometer (SHIMADZU). Mass spectra were measured on a 

Shimadzu Biotech matrix-assisted laser desorption ionization (MALDI) mass 

spectrometer. The 1H- and 13C-NMR measurements were performed by a DRX-400 or 

DRX-600 spectrometer (Bruker BioSpin). Geometry optimization and Molecular 

orbital distributions of three dyes were performed using B3LYP functional and 6-31G 

(d,p) basis set implemented in the Gaussian 09 program package.1
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Cell Fabrication and characterization

The device fabrication was performed as follows. A double-layered TiO2 film as 

photoanode containing 11 μm main transparent layer with ca. 20 nm sized titania 

particles and a 5 μm scattering layer with ca. 400 nm sized titania particles were 

screen printed on the fluorine-doped tin oxide (FTO) conducting glass substrate. The 

double-layered film were heated to 520 oC and sintered for 1 hour and then cooled to 

80 oC, following additional treatment with 0.1 M HCl aqueous solution. The resuluted 

TiO2 films were washed, dried and then dipped into a 3 × 10-4 M acetonitrile/n-BuOH 

(1/1, v/v) solution of the corresponding sensitizer, or  a mixture of sensitizer (0.3 

mM) and DCA (20 mM) in CH3CN/n-BuOH (1/1, v/v) for 40 h. Afterwards, the dye-

loaded TiO2 film and a platinum coated conducting glass were assembled into a 

DSSC of a sandwich type and sealed by heating the Surlyn spacer (40 mm thick). An 

electrolyte consisting of 0.6 M dimethylpropylimidazolium iodide, 0.05 M I2, 0.1 M 

LiI and 0.5 M TBP in acetonitrile was injected into the spacer from the 

counterelectrode side through a pre-drilled hole, and then the hole was sealed with a 

Bynel sheet and a thin-glass-slide cover by heating.             

The I-V characteristics were carried out by using a black metal mask with an aperture 

area of 0.2304 cm-2 under standard AM 1.5 sunlight, 100 mW·cm-2 (WXS-155S-10: 

Wacom Denso Co. Japan). Monochromatic IPCE spectra were determined with 

monochromatic incident light of 1 × 1016 photons per cm2 under 100 mW·cm-2 in 

director current mode (CEP-2000BX, Bunko-Keiki). The IMVS were characterized 

with a potentiostat (Solartron1287) equipped with a frequency response analyzer 

(Solartron1255B) at an open-circuit condition based on a monochromatic illumination 

(420 nm) controlled by a Labview system to obtain the photovoltaic response induced 

by the modulated light.
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Fig. S1 Normalized UV-vis and emission spectra of dyes LJ-7, LJ-8 and LJ-9 in CH2Cl2.
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Fig. S2 Energy-level diagram of dyes LJ-7, LJ-8, and LJ-9, the electrolyte and TiO2, ECB: energy 
level of conduction band of TiO2; G1: driving force for electron injection; G2: driving force for 
regeneration of the oxidized dyes.
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DFT Calculation

Fig. S3 Optimized ground-state geometries and dihedral angles between the π-planes of LJ-7, LJ-
8 and LJ-9.

Fig. S4 The HOMO and LUMO of dyes LJ-7, LJ-8 and LJ-9 optimized at B3LYP/6-31G** level.
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Fig. S5 The power conversion efficiency statistics of DSSCs based on dyes LJ-7, LJ-8 and LJ-9 
with/without DCA coadsorption. (12 devices for each sample).
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Fig. S6 IPCE spectra and the integrated JSC of DSSCs based on dyes LJ-7, LJ-8 and LJ-9 
with/without DCA coadsorption.
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Fig. S7 1H NMR spectra of compound 4a.

Fig. S8 13C NMR spectra of compound 4a.
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Fig. S9 1H NMR spectra of compound 4b.

Fig. S10 13C NMR spectra of compound 4b.
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Fig. S11 1H NMR spectra of compound 7.

Fig. S12 13C NMR spectra of compound 7.
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Fig. S13 1H NMR spectra of dye LJ-7.

Fig. S14 13C NMR spectra of dye LJ-7.
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Fig. S15 1H NMR spectra of dye LJ-8.

Fig. S16 13C NMR spectra of dye LJ-8.
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Fig. S17 1H NMR spectra of dye LJ-9.

Fig. S18 13C NMR spectra of dye LJ-9.
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