Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Liquid metals for tuning gas sensitive layers

Jialuo Han,^a Jiong Yang,^a Jianbo Tang,^a Mohammad B. Ghasemian,^a Lee J. Hubble,^b Nitu Syed,^c Torben Daeneke,^c Kourosh Kalantar-Zadeh^{*a}

^a School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia

^b CSIRO Manufacturing, Lindfield, NSW 2070, Australia

^c School of Engineering, RMIT University, Melbourne, VIC 3000, Australia

*Corresponding author E-mail: k.kalantar-zadeh@unsw.edu.au

Fig. S1 The comparison of EGaIn particle size for three typical samples with different ratios: (a) 70% WO₃-30% EGaIn (b) 50% WO₃-50% EGaIn (c) 30% WO₃-70% EGaIn.

Fig. S2 Statistical distribution, average size and standard deviation of three samples with different ratios: (a) 70% WO₃-30% EGaIn has an average size of 1.53 μ m and a standard deviation of 0.41, (b) 50% WO₃-50% EGaIn has an average size of 2.12 μ m and a standard deviation of 0.56, and (c) 30% WO₃-70%EGaIn has an average size of 2.6 μ m and a standard deviation of 0.64. A left shift indicates the size increases, when mixing with more WO₃.

Fig. S3 Cross-sectional SEM images of three typical 70% WO $_3$ -30% EGaIn samples.

Fig. S4 The size repeatability of three 70% WO₃-30% EGaIn samples: (a) has an average size of 1.55 μ m and a standard deviation of 0.46, (b) has an average size of 1.52 μ m and a standard deviation of 0.49, and (c) has an average size of 1.61 μ m and standard deviation of 0.50.

Fig. S5 Mott-Schottky plots of different samples with different ratios of WO_3 and EGaIn.

Fig. S6 XPS spectra of indium for different samples with different ratios of WO_3 and EGaIn.

Fig. S7 Dynamic response of $70\%WO_3$ -30%EGaIn sample to 0.4% H₂ gas at different temperatures.

Fig. S8 Measured selectivity of 70%WO₃-30% EGaIn sample towards (a) H_2S gas (5.2 ppm, 10.3 ppm) and (b) NO_2 gas (3.6 ppm, 5.4 ppm) at 400 °C.

	Resistance trend	Concentration	Response factor
H ₂	\downarrow	0.4%	33.2
		0.8%	38.9
H₂S	\downarrow	5.2 ppm	1.8
		10.3 ppm	2.5
NO_2	1	3.6 ppm	4.4
		5.4 ppm	5.5

Table S1 Gas sensing performance of 70% WO₃-30% EGaIn sample to different gases at 400 $^{\circ}$ C and resistance trend.