# **Supporting Information (SI)**

### Rapid room temperature synthesis of red iridium(III) complexes with

## **Ir-S-P-S structures for efficient OLEDs**

Ning Su,<sup>1</sup> Hui-Qing Yang,<sup>1</sup> Cheng-Zhen Shen,<sup>1</sup> Zhi-Ping Yan,<sup>1</sup> Zhao-Xu Chen,<sup>1</sup> You-Xuan Zheng<sup>\*1,2</sup>

<sup>1</sup>State Key Laboratory of Coordination Chemistry, Collaborative Innovation Center of Advanced Microstructures, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China, \*E-mail: yxzheng@nju.edu.cn

<sup>2</sup> MaAnShan High-Tech Research Institute of Nanjing University, MaAnShan, 238200, P. R. China

#### Materials and Measurements.

All reagents and chemicals were purchased from commercial sources and used without further purification. <sup>1</sup>H NMR and <sup>19</sup>F NMR were measured on a Bruker AM 400 spectrometer. High-resolution electrospray mass spectra (HRMS) was measured on G6500 from Agilent for complexes. TGA measurements were carried out on a DSC 823e analyzer (METTLER). Absorption and photoluminescence spectra were measured on a UV-3100 spectrophotometer and a Hitachi F-4600 photoluminescence spectrophotometer, respectively. The decay lifetimes were measured with an Edinburgh Instruments FLS-980 fluorescence spectrometer in degassed  $CH_2Cl_2$  solution at room temperature. The luminescence quantum efficiencies were calculated by comparison of the emission intensities (integrated areas) of a standard sample (*fac*-Ir(ppy)<sub>3</sub>) and the unknown sample.

#### X-ray Crystallography.

The single crystals of complexes were carried out on a Bruker SMART CCD diffractometer using monochromated Mo K $\alpha$  radiation ( $\lambda = 0.71073$  Å) at room temperature. Cell parameters were retrieved using SMART software and refined using SAINT<sup>1</sup> on all observed reflections. Data were collected using a narrow-frame method with scan widths of 0.30° in  $\omega$ and an exposure time of 10 s/frame. The highly redundant data sets were reduced using SAINT and corrected for Lorentz and polarization effects. Absorption corrections were applied using SADABS  $^2$  supplied by Bruker. The structures were solved by direct methods and refined by full-matrix least-squares on F2 using the program SHELXS-97.<sup>3</sup> The positions of metal atoms and their first coordination spheres were located from direct-methods E-maps; other non-hydrogen atoms were found in alternating difference Fourier syntheses and least-squares refinement cycles and, during the final cycles, refined anisotropically. Hydrogen atoms were placed in calculated position and refined as riding atoms with a uniform value of Uiso.

#### Details of cyclic voltammetry measurements.

Cyclic voltammetry measurements were conducted on a MPI-A multifunctional electrochemical and chemiluminescent system (Xi'an Remex Analytical Instrument Ltd. Co., China) at room temperature, with a polished Pt plate as the working electrode, platinum thread as the counter electrode and Ag-AgNO<sub>3</sub> (0.1 M) in CH<sub>2</sub>Cl<sub>2</sub> as the reference electrode, *tetra*-n-butylammonium perchlorate (0.1 M) was used as the supporting electrolyte, using  $Fc^+/Fc$  as the internal standard, the scan rate was 0.1 V s<sup>-1</sup>.

#### **OLEDs** fabrication and measurement.

All OLEDs were fabricated on the pre-patterned ITO-coated glass substrate with a sheet resistance of 15  $\Omega$  sq<sup>-1</sup>. The deposition rate for organic compounds is 1-2 Å s<sup>-1</sup>. The phosphor and the host 2,6DCzPPy was co-evaporated to form emitting layer from two separate sources. The cathode consisting of LiF/ Al was deposited by evaporation of LiF with a deposition rate of 0.1 Å s<sup>-1</sup> and then by evaporation of Al metal with a rate of 3 Å s<sup>-1</sup>. The characteristic curves of the devices were measured with a computer which controlled KEITHLEY 2400 source meter with a calibrated silicon diode in air without device encapsulation. On the basis of the uncorrected PL and EL spectra, the Commission Internationale de l'Eclairage (CIE) coordinates were calculated using a test program of the Spectra scan PR650 spectrophotometer.



Fig. S1 TGA curves of (tfmpqz)<sub>2</sub>Ir(opss) and (tfmpqz)<sub>2</sub>Ir(onss) complexes.



Fig. S2 CV curves of (tfmpqz)<sub>2</sub>Ir(opss) and (tfmpqz)<sub>2</sub>Ir(onss) complexes.



Fig. S3 <sup>1</sup>H NMR of (tfmpqz)<sub>2</sub>Ir(opss) complex.



Fig. S4 <sup>19</sup>F NMR of (tfmpqz)<sub>2</sub>Ir(opss) complex.



Fig. S5 <sup>1</sup>H NMR of (tfmpqz)<sub>2</sub>Ir(onss) complex.



Fig. S6<sup>19</sup>F NMR of (tfmpqz)<sub>2</sub>Ir(onss) complex.

|                                            | (tfmpqz) <sub>2</sub> Ir(onss) |  |
|--------------------------------------------|--------------------------------|--|
| Formula                                    | $C_{50}H_{30}F_6IrN_4O_2PS_2$  |  |
| Formula weight                             | 1120.07                        |  |
| T (K)                                      | 193(2)                         |  |
| Wavelength (Å)                             | 1.34139                        |  |
| Crystal system                             | Monoclinic                     |  |
| Space group                                | P 21/n                         |  |
| <i>a</i> (Å)                               | 21.161(3)                      |  |
| <i>b</i> (Å)                               | 8.4097(10)                     |  |
| <i>c</i> (Å)                               | 26.306(3)                      |  |
| $\alpha$ (deg)                             | 90                             |  |
| $\beta$ (deg)                              | 110.612(4)                     |  |
| γ (deg)                                    | 90                             |  |
| $V(Å^3)$                                   | 4381.7(9)                      |  |
| Ζ                                          | 4                              |  |
| $ ho_{ m calcd}~( m g/cm^3)$               | 1.698                          |  |
| $\mu$ (Mo K $\alpha$ ) (mm <sup>-1</sup> ) | 5.131                          |  |
| F (000)                                    | 2208                           |  |
| Range of transm factors (deg)              | 2.888-53.496                   |  |
| Reflns collected                           | 7883                           |  |
| Unique(R <sub>int</sub> )                  | 7883(0.1412)                   |  |
| $R_{I^{a}}, wR_{2^{b}}[I > 2s(I)]$         | 0.0698, 0.1929                 |  |
| $R_{1^{a}}, wR_{2^{b}}$ (all data)         | 0.0908, 0.2095                 |  |
| GOF on $F^2$                               | 1.116                          |  |
| CCDC No.                                   | 1887635                        |  |

Table S1. Crystal information of (tfmpqz)<sub>2</sub>Ir(onss) complex.

Table S2. Selected bond lengths of (tfmpqz)<sub>2</sub>Ir(onss) complex (Å).

| C6-Ir1  | 2.012 (7) | P1-S1      | 1.975 (3)   |
|---------|-----------|------------|-------------|
| C19-Ir1 | 1.991 (8) | P1-S2      | 1.975 (3)   |
| Ir1-N3  | 2.052 (7) | C6-Ir1-N1  | 79.8 (3)    |
| Ir1-N1  | 2.062 (7) | C19-Ir1-N3 | 79.9 (3)    |
| Ir1-S2  | 2.515 (2) | S2-Ir1-S1  | 80.37 (7)   |
| Ir1-S1  | 2.528 (2) | S1-P1-S2   | 110.95 (15) |
| O1-P1   | 1.574 (7) | C41-O1-P1  | 132.1 (6)   |
| O2-P1   | 1.594 (6) | C31-O2-P1  | 126.8 (6)   |

| Complex           | E <sub>ox</sub><br>(V) <sup>a</sup> | E (Fc/Fc <sup>+</sup> ) | $E_{ m g}^{ m opt}$<br>(eV) <sup>b</sup> | <i>Е</i> номо<br>(eV) <sup>c</sup> | Elumo<br>(eV) <sup>d</sup> |
|-------------------|-------------------------------------|-------------------------|------------------------------------------|------------------------------------|----------------------------|
| (tfmpqz)2Ir(opss) | 1.38                                | 0.20                    | 2.06                                     | -5.98                              | -3.92                      |
| (tfmpqz)2Ir(onss) | 1.37                                | 0.20                    | 2.06                                     | -5.97                              | -3.91                      |

Table S3. Electrochemical data of two complexes.

<sup>a</sup> Oxidation potentials measured by cyclic voltammetry. <sup>b</sup> Calculated from the absorption band edge of the solution,  $E_{g^{opt}} = 1240/\lambda_{edge.}$  <sup>c</sup> Calculated from empirical equation:  $E_{HOMO} = -[E_{ox} - E (Fc/Fc^{+}) + 4.8]$  eV. <sup>d</sup> Calculated from  $E_{LUMO} = E_{g^{opt}} + E_{HOMO}$ .

### **References:**

- 1. SAINT-Plus, version 6.02, Bruker Analytical X-ray System, Madison, WI, 1999.
- Sheldrick, G. M. SADABS An empirical absorption correction program, Bruker Analytical X-ray Systems, Madison, WI, 1996.
- 3. Sheldrick, G. M. SHELXTL-97. Universität of Göttingen, Göttingen, Germany, 1997.