## Lattice Restraint Induced Ultra-large Bandgap Widening of

## **ZnO Nanoparticles**

An Xie,<sup>a</sup> Dandan Yang,<sup>b</sup> Xiaoming Li,<sup>\*b</sup> Haibo Zeng<sup>b</sup>

<sup>a.</sup> School of Materials Science and Engineering, Key Laboratory of Functional Materials and Applications of Fujian Province, Xiamen University of Technology, Xiamen 361024, China, E-mail: anxie@xmut.edu.cn

<sup>b.</sup> MIIT Key Laboratory of Advanced Display Materials and Devices, Institute of Optoelectronics & Nanomaterials, College of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China. E-mail: lixiaoming@njust.edu.cn



**Fig. S1.** XRD patterns of ZnMgO nanoparticle alloys prepared with different precursors and nominal Mg concentrations. (a)  $Zn(St)_2+Mg(St)_2$ , (b)  $Zn(St)_2+Mg(acac)_2$ , (c)  $Zn(acac)_2+Mg(acac)_2$ , (d)  $Zn(acac)_2+Mg(St)_2$ .



**Fig. S2**. Absorption spectra of ZnMgO nanoparticle alloys prepared with different precursors and nominal Mg concentrations. (a)  $Zn(St)_2+Mg(St)_2$ , (b)  $Zn(St)_2+Mg(acac)_2$ , (c)  $Zn(acac)_2+Mg(acac)_2$ , (d)  $Zn(acac)_2+Mg(St)_2$ .



Fig. S3. XRD pattern of Be-0.2Mg-MB70 sample.



**Fig. S4**. Normalized absorption curves of samples with different Be concentration at a 60% nominal Mg concentration.



Fig. S5. PL spectra of samples with different Mg nominal concentrations.



**Fig. S6**. Calculated Eg values and emission peak energies as a function of Mg nominal concentration. The Be to Mg ratio is 0.4.