Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

High-Conductivity Electrolyte Gate Dielectrics Based on Poly(styrene-*co*-methyl methacrylate)/Ionic Liquid

Donghui Lee,^{‡a} Yunji Jung,^{‡b} Myeongjin Ha,^b Hyungju Ahn,^c Keun Hyung Lee^{*a} and

Myungeun Seo*bde

^aDepartment of Chemistry and Chemical Engineering, Inha University, Incheon 22212,

Republic of Korea

^bGraduate School of Nanoscience and Technology, Korea Advanced Institute of Science and

Technology (KAIST), Daejeon 34141, Republic of Korea

^cPohang Accelerator Laboratory (PAL), Pohang University of Science and Technology

(POSTECH), Pohang 37673, Republic of Korea

^dDepartment of Chemistry, KAIST, Daejeon 34141, Republic of Korea

eAdvanced Battery Center, KAIST Institute for the Nanocentury, KAIST, Daejeon 34141,

Republic of Korea

[‡]These authors contributed equally to this work.

This information includes:

Supporting Figures S1 – S5

Figure S1. (a) SAXS data of P(S-*co*-MMA) in [EMI][TFSI] at 30 wt% concentration obtained at 30 °C. The red line shows a unified fit with R_g of 2.51 nm. (b) SAXS data of PMMA in [EMI][TFSI] at 30 wt% concentration obtained at 30 °C. (c) Temperature-dependent SAXS data of P(S-*co*-MMA) in [EMI][TFSI] at 30 wt% concentration. (d) SAXS data of P(S-*co*-MMA) in [EMI][TFSI] with different concentrations. The data is vertically shifted for clarity. The SAXS data of bulk P(S-*co*-MMA) is also shown as a block dashed line (100 wt%) as a reference.

Figure S2. (a) *G*' and *G*'' of 40 wt% P(S-*co*-MMA) in [EMI][TFSI] at different temperatures at $\gamma = 1\%$ and $\omega = 1$ rad/s. (b) *G*' and *G*'' values of 40 wt% PMMA in [EMI][TFSI] at different temperatures at $\gamma = 1\%$ and $\omega = 1$ rad/s. (c) tTS curve of 40 wt% P(S-*co*-MMA) in [EMI][TFSI] constructed with $T_{ref} = 70$ °C. (d) Temperature dependence of the shift factors used in the tTS curve construction.

Figure S3. (a) I_D - V_G transfer curve obtained from a P3HT transistor gated with a PS-*b*-PMMA-*b*-PS ion gel at a V_G sweep rate of 20 mV/s. (b-c) Representative output I_D - V_D curves for P3HT thin-film transistors gated with (b) P(S-*co*-MMA)/[EMI][TFSI] and (c) PS-*b*-PMMA-*b*-PS/[EMI][TFSI].

Figure S4. Representative $I_D^{0.5}$ - V_G transfer curves obtained in the saturation regime of $V_D = -0.5$ V for P3HT thin-film transistors gated with (a) P(S-*co*-MMA)/[EMI][TFSI] and (b) PS-*b*-PMMA-*b*-PS/[EMI][TFSI].

Figure S5. Overlay of I_D - V_G transfer curves obtained from the P3HT thin-film transistors gated with two different electrolyte gate dielectrics based on (a) P(S-*co*-MMA)/[EMI][TFSI] and (b) PS-*b*-PMMA-*b*-PS/[EMI][TFSI] at five different V_G sweep rates.