Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019 ## **Supporting Information** **Figure S1**. Reflection peak position shift of a WO₃ inverse opal (pore size: 277 nm) during H₂ sensing measurement at 140 °C. (blue region: H₂ exposure; grey region: regeneration by synthetic air; white region: flushed by pure N₂) **Figure S2.** Reflection peak position shift of a WO₃ inverse opal (pore size: 452 nm) during H_2 sensing measurement at 140 °C. (blue region: H_2 exposure; grey region: regeneration by synthetic air; white region: flushed by pure N_2) Figure S3. Reflection peak position shift of a WO₃ inverse opal (pore size: 553 nm) during H_2 sensing measurement at 140 °C. (blue region: H_2 exposure; grey region: regeneration by synthetic air; white region: flushed by pure N_2) **Figure S4.** Reflection peak position shift of a WO₃ inverse opal (pore size: 583 nm) during H₂ sensing measurement at 140 °C. (blue region: H₂ exposure; grey region: regeneration by synthetic air; white region: flushed by pure N₂) **Figure S5.** Reflection peak position shift of a WO₃ inverse opal (pore size: 619 nm) during H₂ sensing measurement at 140 °C. (blue region: H₂ exposure; grey region: regeneration by synthetic air; white region: flushed by pure N₂) **Figure S6.** Reflection peak position shift of WO₃ inverse opal with different band gap position (left: 525 nm, right: 601 nm) during H₂ sensing measurement in an open system at 200 °C (blue region: H₂ exposure; white region: flushed by pure N₂)