Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Materials for

Facile p-n Control, Magnetic and Thermoelectric **Properties of Chromium Selenides Cr_{2+x}Se₃**

Quansheng Guo, † David Berthebaud, † Jumpei Ueda, § Setsuhisa Tanabe, § Akinobu Miyoshi, Kazuhiko Maeda, and Takao Mori † **

† Center for Functional Sensor & Actuator (CFSN) & WPI Center for Materials

Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS),

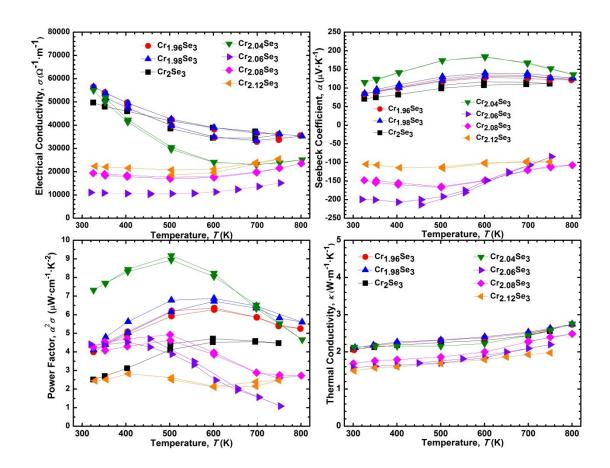
Namiki 1-1, Tsukuba 305-0044, Japan

^T CNRS-Saint Gobain-NIMS, UMI 3629, Laboratory for Innovative Key Materials and

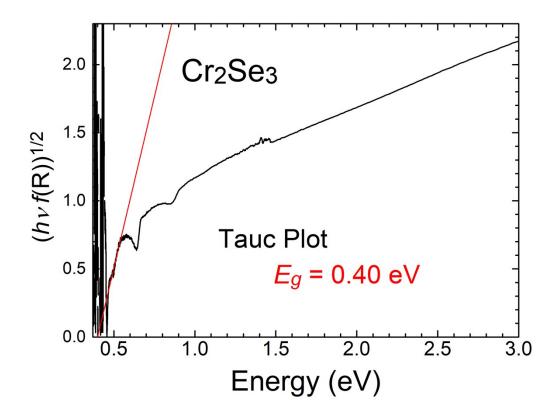
Structures (LINK), National Institute for Materials Science, Tsukuba 305-0044, Japan

§ Graduate School of Human and Environmental Studies, Kyoto University, Kyoto 606-

8501, Japan


Department of Chemistry, School of Science, Tokyo Institute of Technology, 2-12-1-NE-

2 Ookayama, Meguro-ku, Tokyo 152-8550, Japan


‡ Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai 1-

1-1, Tsukuba 305-8671, Japan

Corresponding author: MORI.Takao@nims.go.jp

Figure S1. Temperature dependence of (a) Electrical conductivity, (b) Seebeck coefficient, (c) Power factor and (d) Thermal conductivity of $Cr_{2+x}Se_3$ (x = -0.04, -0.02, 0, 0.04, 0.06,0.08 and 0.12). No significant hysteresis was observed.

Figure S2. Tauc plot for Cr₂Se₃.

Table S1. Lattice parameters of $Cr_{2+x}Se_3$ (x = -0.04, 0, 0.08) at room temperature.

Sample	x = -0.04	x = 0	x = 0.08
a [Å] = b	6.2478(3)	6.2510(2)	6.2490(1)
c [Å]	17.3354(9)	17.3280(5)	17.3853(4)
V[Å ³]	586.02(8)	586.38(5)	587.94(2)
$R_{ m P}{}^a \setminus R_{ m B}{}^b$	0.107 \ 0.066	0.109 \ 0.106	0.122 \ 0.096

 $^{^{}a}$ $R_{P} = \Sigma |y_{o} - y_{c}| / \Sigma |y_{o}|$ b $R_{B} = \Sigma |I_{o} - I_{c}| / \Sigma |I_{o}|$