## Supporting information for

A theoretical study on a series of polycyclic conjugated hydrocarbons dinaphthobenzo[1,2:4,5]dicyclobutadienes with the tunable charge transport property by controlling [N]phenylenes and (anti)aromaticity

Hang Yin,<sup>a,b</sup> Daoyuan Zheng,<sup>a,b</sup> Yan Qiao<sup>c</sup> and Xiaofang Chen<sup>a,\*</sup>

a Institute of Molecular Sciences and Engineering, Shandong University, Qingdao, 266237, P. R. China. E-mail: xf.chen@sdu.edu.cn

<sup>&</sup>lt;sup>b</sup> State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, P. R. China. <sup>C</sup> Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, P. R. China.

## Index

| Section S.1. Computational Details of Marcus Rate Parameters                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S1. The LUMO+1 diagram for DNBDC1~DNBDC5 at the MN15/6-31G* level ······S4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Figure S2. The schematic molecular packing model for DNBDCs ······S5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Figure S3. The FMO diagram for DNBDC1~DNBDC5-dimer at the wB97XD/6-31G*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| level. ·····S6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Table S1. The experimental value and calculated frontier molecular orbitals (FMOs) for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DNBDC1 screened by different functionals (According to Incremental HF Exchange Component                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| (HF%)) with the 6-31G* basis set ······S7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Table S2. The calculated electron density (ED), Shannon entropy (SE) and shannon aromaticity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| (SA) values towards CBD1, CBD2 and core of <b>DNBDC1~ DNBDC5</b> S8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Table S3. The optimized every step of the geometrical configuration for DNBDC1-dimer at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| CAM-B3LYP/6-31G* level ······S9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Table S4. The optimized every step of the geometrical configuration for DNBDC1-dimer at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| wB97XD/6-31G* level                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>Table S5.</b> The transition dipole moment of $x(\mu_x)$ , $y(\mu_y)$ and $z$ orientations ( $\mu_z$ ) (a.u.), the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| electronic coupling values of each states V (eV), afterwards calculated the total electronic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| coupling values V <sub>total</sub> (eV) ·······S11-S13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Table S6</b> . The calculated reorganization energy $\lambda(eV)$ for <b>DNBDC1~</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DNBDC5······S14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>Table S7</b> . The calculated charge hopping rates for <b>DNBDC1~ DNBDC5</b> at 6.5 Å, 8.5 Å and 14.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $Å$ by Marcus semi-classical equation $\cdots$ S15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Å by Marcus semi-classical equation $\cdots$ S15<br><b>Table S8</b> . The transition dipole moment of x ( $\mu_x$ ), y ( $\mu_y$ ) and z orientations ( $\mu_z$ ) (a.u.), the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\hat{A}$ by Marcus semi-classical equation $\cdots$ S15<br><b>Table S8</b> . The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the<br>resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\hat{A}$ by Marcus semi-classical equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $ {A}$ by Marcus semi-classical equation $\cdots$ S15<br><b>Table S8</b> . The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the<br>resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the<br>electronic coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values $V_{total}$ (eV) at 8.5 $ {A}$ $\cdots$ S16-S18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $ {A}$ by Marcus semi-classical equation $\cdots$ S15<br><b>Table S8</b> . The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the<br>resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the<br>electronic coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values $V_{total}$ (eV) at 8.5 $ {A}$ $\cdots$ S16-S18<br><b>Table S9</b> The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the resultant                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $ {A}$ by Marcus semi-classical equation $ {S15}$<br><b>Table S8</b> . The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the<br>resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the<br>electronic coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values $V_{total}$ (eV) at 8.5 $ {A}$ $ {S16}$<br><b>Table S9</b> The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the resultant<br>transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the electronic                                                                                                                                                                                                                                                                                                                                                               |
| $\hat{A}$ by Marcus semi-classical equation $\cdots$ S15<br><b>Table S8</b> . The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the<br>resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the<br>electronic coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values $V_{total}$ (eV) at 8.5 $\hat{A}$ $\cdots$ S16-S18<br><b>Table S9</b> The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the resultant<br>transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the electronic<br>coupling values of each states $V$ (eV), afterwards calculated the total electronic coupling values<br>$\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the electronic<br>coupling values of each states $V$ (eV), afterwards calculated the total electronic coupling values                                        |
| $\hat{A}$ by Marcus semi-classical equation $\cdots$ S15<br><b>Table S8</b> . The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the<br>resultant transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the<br>electronic coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values $V_{total}$ (eV) at 8.5 $\hat{A}$ $\cdots$ S16-S18<br><b>Table S9</b> The transition dipole moment of $x$ ( $\mu_x$ ), $y$ ( $\mu_y$ ) and $z$ orientations ( $\mu_z$ ) (a.u.), the resultant<br>transition dipole moment $\mu_{tr}$ (a.u.) and orbital energy difference $\Delta E$ (eV), and the electronic<br>coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values of each states $V$ (eV), afterwards calculated the total electronic<br>coupling values of each states $V$ (eV), afterwards calculated the total electronic coupling values<br>$V_{total}$ (eV) at 14.9 $\hat{A}$ $\cdots$ S19-S21 |

## Section S.1. Computational Details of Marcus Rate Parameters.

Our simulation model is based on a combination of first-principles quantum mechanics calculations and Marcus semi-classical equation. By using the hopping mechanism to describe the charge transfer, the transfer rate (k) is described by the Marcus semi-classical equation:

$$k = \frac{V^2}{\hbar} \left(\frac{\pi}{\lambda k_{\rm B} T}\right)^{1/2} \exp\left(-\frac{\lambda^2}{4k_{\rm B} T}\right)$$
(1)

Where V is the electronic coupling between adjacent molecules in the crystal structure,  $\lambda$  is the reorganization energy, T is the temperature and  $k_{\rm B}$  is the Boltzmann constant.

The electronic coupling V of the two states ( $S_0$  and  $S_n$  states) from the generalized Mulliken–Hush (GMH) formalism can be expressed as:

$$V = \frac{\mu_{\rm tr} \Delta E}{\sqrt{(\Delta \mu)^2 + 4(\mu_{\rm tr})^2}}$$
(2)

Where  $\mu_{tr}$  is the calculated transition dipole moment,  $\Delta \mu$  is the dipole moment difference between  $S_0$  and  $S_n$  states, which is negligible between two same molecules, and  $\Delta E$  is the vertical excitation energy. The calculated values of *V* were summarized in Table S5, S8 and S9.

The  $\lambda$  of charge hopping depends on the rearrangement of the nuclear positions of molecules, we calculated  $\lambda$  as:

$$\lambda = \left[ E^+(\mathbf{M}) - E^+(\mathbf{M}^+) \right] + \left[ E(\mathbf{M}^+) - E(\mathbf{M}) \right]$$
(3)

Here, E(M) and  $E(M^+)$  are the neutral state energies at the optimal ground geometries and cation geometries, respectively.  $E^+(M^+)$  and  $E^+(M)$  refer to the energies of the cation state at the optimal cation and neutral geometries, respectively. The calculated values of  $\lambda$  were summarized in Table S6.

Based on these parameters, the charge hopping rate k can be obtained by Marcus semiclassical model. All the above mentioned calculations about Marcus rate expression were also performed in the Gaussian 16 A.03 software package.



Figure S1. The LUMO+1 diagram for DNBDC1~DNBDC5 at the MN15/6-31G\* level.



**Figure S2**. The schematic molecular packing model for DNBDCs (Herein, the centres of bottom DNBDC sets as the origin of coordinate, the direction of chain length sets as x-axis, the optimized step length of x-axis sets as 0.50 Å, the direction of chain wide sets as y-axis, and the direction of vertical interface packing sets as z-axis).



Figure S3. The FMO diagram for DNBDC1~DNBDC5-dimer at the *w*B97XD/6-31G\* level.

**Table S1**. The experimental value and calculated frontier molecular orbitals (FMOs) for **DNBDC1** screened by different functionals (According to incremental HF exchange component (HF%)) at the 6-31G\* basis set.

|          | HF%  | HOMO  | LUMO  | $E_{g}$ |
|----------|------|-------|-------|---------|
| exp.     |      | -5.66 | -2.96 | 2.70    |
| B3LYP    | 0.20 | -4.96 | -1.98 | 2.97    |
| B3PW91   | 0.20 | -5.07 | -2.10 | 2.97    |
| PBE0     | 0.25 | -4.41 | -2.47 | 1.94    |
| M06      | 0.27 | -5.21 | -1.89 | 3.32    |
| PBE0-1/3 | 0.33 | -4.41 | -2.45 | 1.96    |
| PBE38    | 0.38 | -4.41 | -2.44 | 1.97    |
| MN15     | 0.44 | -5.67 | -1.46 | 4.20    |
| M062X    | 0.54 | -6.15 | -1.33 | 4.83    |

|         | CBD1 |      |                       |      | CBD2 |                       |      |      | CORE                  |  |  |  |
|---------|------|------|-----------------------|------|------|-----------------------|------|------|-----------------------|--|--|--|
|         | ED   | SE   | SA                    | ED   | SE   | SA                    | ED   | SE   | SA                    |  |  |  |
| DNBDC1  | 1.11 | 1.38 | 3.32×10 <sup>-3</sup> | 1.11 | 1.38 | 3.33×10 <sup>-3</sup> | 1.82 | 1.79 | 3.25×10 <sup>-5</sup> |  |  |  |
| DNBDC2  | 1.11 | 1.38 | $2.81 \times 10^{-3}$ | 1.11 | 1.38 | 3.03×10 <sup>-3</sup> | 3.33 | 2.40 | $1.69 \times 10^{-3}$ |  |  |  |
| DNBDC3  | 1.11 | 1.38 | $2.77 \times 10^{-3}$ | 1.11 | 1.38 | $2.33 \times 10^{-3}$ | 4.83 | 2.77 | $1.70 \times 10^{-3}$ |  |  |  |
| DNBDC4a | 1.12 | 1.38 | $6.92 \times 10^{-3}$ | 1.12 | 1.38 | $6.92 \times 10^{-3}$ | 5.75 | 2.94 | $8.88 \times 10^{-4}$ |  |  |  |
| DNBDC4b | 1.11 | 1.38 | $2.06 \times 10^{-3}$ | 1.10 | 1.38 | $1.88 \times 10^{-3}$ | 6.33 | 3.04 | $1.80 \times 10^{-4}$ |  |  |  |
| DNBDC5  | 1.10 | 1.38 | 1.76×10 <sup>-3</sup> | 1.10 | 1.38 | $1.76 \times 10^{-3}$ | 7.84 | 3.26 | $1.78 \times 10^{-3}$ |  |  |  |

**Table S2**. The calculated electron density (ED), Shannon entropy (SE) and shannon aromaticity (SA) values towards CBD1, CBD2 and core of **DNBDC1~ DNBDC5**.

| x    | HF(a.u.)     | HF(eV)           |            | Dipole (a.u.) |            |
|------|--------------|------------------|------------|---------------|------------|
|      |              |                  | Х          | У             | Z          |
| 4.0  | -4250.245635 | -115653.43397399 | -0.1064523 | 0.04449       | 0.1611256  |
| 4.5  | -4250.249128 | -115653.52902201 | -0.0209489 | 0.0123234     | -0.0004531 |
| 5.0  | -4250.249167 | -115653.53006963 | 0.0186209  | -0.0083952    | 0.0044031  |
| 5.5  | -4250.248963 | -115653.52453764 | -0.0281626 | 0.0019801     | 0.0240172  |
| 6.0  | -4250.249122 | -115653.52885330 | -0.0163870 | 0.0084066     | 0.0066423  |
| 6.5  | -4250.249085 | -115653.52785466 | -0.0370038 | -0.002729     | 0.0191409  |
| 7.0  | -4250.249108 | -115653.52848867 | 0.0007372  | -0.0004891    | -0.0040644 |
| 7.5  | -4250.249096 | -115653.52814581 | 0.0003521  | 0.0081929     | 0.0084048  |
| 8.0  | -4250.249107 | -115653.52846146 | 0.0000979  | -0.0000233    | -0.0002703 |
| 8.5  | -4250.246973 | -115653.47038775 | -0.0001228 | 0.0000164     | 0.0001402  |
| 9.0  | -4250.246973 | -115653.47038775 | 0.0000611  | 0.0000906     | 0.0002063  |
| 9.5  | -4250.246981 | -115653.47058639 | -0.0030118 | 0.0009175     | 0.0008482  |
| 10.0 | -4250.246213 | -115653.44971283 | 0.0890626  | -0.0368959    | -0.0611204 |
| 10.5 | -4250.246981 | -115653.47058911 | -0.0032691 | 0.0008801     | 0.0008255  |
| 11.0 | -4250.244138 | -115653.39325000 | 0.0133308  | -0.0018121    | -0.0109681 |
| 11.5 | -4250.246725 | -115653.46364214 | 0.2533142  | 0.0800023     | -0.1160602 |
| 12.0 | -4250.246866 | -115653.46747073 | -0.1891212 | -0.0875232    | 0.0626859  |
| 12.5 | -4250.247246 | -115653.47781907 | -0.4492933 | -0.0431894    | 0.1640091  |

**Table S3**. The optimized every step of the geometrical configuration for **DNBDC1-**dimer atCAM-B3LYP/6-31G\* level.

| x   | HF(a.u.)       | HF(eV)           |            | Dipole (a.u.) |            |
|-----|----------------|------------------|------------|---------------|------------|
| 40  | -4251.71706250 | -115693.47298769 | 0.0031719  | -0.0026329    | -0.004768  |
| 45  | -4251.71757180 | -115693.48684625 | 0.0001558  | -0.0000707    | -0.0000724 |
| 50  | -4251.71761670 | -115693.48806802 | -0.0003436 | 0.0001586     | 0.0007543  |
| 55  | -4251.71761650 | -115693.48806258 | 0.0001511  | -0.0001881    | -0.0005844 |
| 60  | -4251.71761860 | -115693.48811973 | 0.0000469  | -0.0000021    | -0.000087  |
| 65  | -4251.71761840 | -115693.48811428 | 0.0000470  | 0.0000342     | 0.0000628  |
| 70  | -4251.71761800 | -115693.48810340 | -0.0000834 | -0.00005      | -0.000302  |
| 75  | -4251.71761860 | -115693.48811973 | 0.0000000  | -0.0000946    | -0.000151  |
| 80  | -4251.71761860 | -115693.48811973 | 0.0001811  | -0.0000176    | -0.0003315 |
| 85  | -4251.71710840 | -115693.47423667 | 0.0014098  | -0.0016781    | -0.0037522 |
| 90  | -4251.71710860 | -115693.47424212 | -0.0014504 | 0.0017691     | 0.0037848  |
| 95  | -4251.71710890 | -115693.47425028 | 0.0018237  | -0.0017798    | -0.004057  |
| 100 | -4251.71761840 | -115693.48811428 | -0.0001390 | 0.000009      | 0.0000824  |
| 105 | -4251.71761930 | -115693.48813877 | 0.0002342  | -0.0001487    | -0.0003806 |
| 110 | -4251.71761880 | -115693.48812517 | -0.0000746 | 0.0000483     | 0.0000017  |
| 115 | -4251.71694630 | -115693.46982577 | -0.0086917 | 0.0070095     | -0.0193304 |
| 120 | -4251.71761840 | -115693.48811428 | 0.0001522  | -0.0001454    | -0.0003547 |
| 125 | -4251.71693310 | -115693.46946658 | -0.0026414 | 0.0023603     | -0.0311241 |

**Table S4**. The optimized every step of the geometrical configuration for **DNBDC1-**dimer at *w*B97XD/6-31G\* level.

**Table S5**. The transition dipole moment of x ( $\mu_x$ ), y ( $\mu_y$ ) and z orientations ( $\mu_z$ ) (a.u.), the resultant transition dipole moment  $\mu_{tr}$  (a.u.) and orbital energy difference  $\Delta E$  (eV), and the electronic coupling values of each states V (eV), afterwards calculated the total electronic coupling values  $V_{\text{total}}$  (eV).

| V-6.5 Å | States | $\mu_{\mathrm{x}}$ | $\mu_{\mathrm{y}}$ | $\mu_{\rm z}$ | Dip.S | $\mu_{ m tr}$ | OSC  | $\Delta E$ | V    | V <sub>total</sub> |
|---------|--------|--------------------|--------------------|---------------|-------|---------------|------|------------|------|--------------------|
| DNBDC1  | 1      | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 2.63       | 0.00 | 4.00               |
|         | 2      | -3.38              | -0.27              | -0.54         | 11.82 | 3.44          | 0.78 | 2.68       | 1.34 |                    |
|         | 3      | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 2.73       | 0.00 |                    |
|         | 4      | -0.06              | 0.23               | -0.04         | 0.06  | 0.24          | 0.00 | 2.81       | 1.41 |                    |
|         | 5      | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 2.96       | 0.00 |                    |
|         | 6      | -0.54              | -0.10              | -0.46         | 0.51  | 0.72          | 0.04 | 2.99       | 1.49 |                    |
|         | 7      | -0.20              | -0.07              | -0.03         | 0.04  | 0.21          | 0.00 | 3.28       | 1.64 |                    |
|         | 8      | 0.04               | -0.21              | 0.04          | 0.05  | 0.22          | 0.00 | 3.33       | 1.67 |                    |
|         | 9      | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 3.36       | 0.00 |                    |
|         | 10     | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 3.38       | 0.00 |                    |
|         | 11     | -0.11              | 0.82               | -0.03         | 0.68  | 0.82          | 0.06 | 3.47       | 1.74 |                    |
|         | 12     | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 3.48       | 0.00 |                    |
|         | 13     | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 3.49       | 0.00 |                    |
|         | 14     | 3.15               | 0.11               | 0.25          | 9.96  | 3.16          | 0.90 | 3.67       | 1.83 |                    |
|         | 15     | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 3.72       | 0.00 |                    |
|         | 16     | 1.49               | 0.16               | 0.07          | 2.26  | 1.50          | 0.21 | 3.73       | 1.86 |                    |
|         | 17     | 0.00               | 0.00               | 0.00          | 0.00  | 0.00          | 0.00 | 3.77       | 0.00 |                    |
|         | 18     | 2.12               | 0.28               | 0.54          | 4.86  | 2.21          | 0.45 | 3.77       | 1.88 |                    |
|         | 19     | 0.42               | -0.08              | 0.05          | 0.18  | 0.43          | 0.02 | 3.89       | 1.94 |                    |
|         | 20     | 2.51               | 0.21               | 0.85          | 7.07  | 2.66          | 0.68 | 3.92       | 1.96 |                    |
| DNBDC2  | 1      | -2.26              | 0.34               | -0.19         | 5.28  | 2.30          | 0.37 | 2.84       | 1.42 | 4.30               |
|         | 2      | 3.13               | 0.22               | 0.40          | 10.02 | 3.16          | 0.70 | 2.84       | 1.42 |                    |
|         | 3      | -0.72              | -0.47              | -0.35         | 0.87  | 0.93          | 0.07 | 3.09       | 1.54 |                    |
|         | 4      | 0.19               | -0.20              | 0.09          | 0.08  | 0.29          | 0.01 | 3.16       | 1.58 |                    |
|         | 5      | 0.14               | -0.82              | 0.17          | 0.72  | 0.85          | 0.06 | 3.18       | 1.59 |                    |
|         | 6      | 0.21               | -0.05              | 0.09          | 0.06  | 0.23          | 0.00 | 3.28       | 1.64 |                    |
|         | 7      | -0.05              | 0.18               | -0.25         | 0.10  | 0.32          | 0.01 | 3.34       | 1.67 |                    |
|         | 8      | 0.09               | -0.37              | 0.00          | 0.14  | 0.38          | 0.01 | 3.37       | 1.68 |                    |
|         | 9      | 0.12               | 0.69               | 0.08          | 0.50  | 0.71          | 0.04 | 3.40       | 1.70 |                    |
|         | 10     | -0.52              | 0.29               | 0.09          | 0.37  | 0.61          | 0.03 | 3.45       | 1.73 |                    |
|         | 11     | 0.10               | 0.10               | -0.07         | 0.03  | 0.16          | 0.00 | 3.62       | 1.81 |                    |
|         | 12     | 0.66               | 0.12               | 0.26          | 0.51  | 0.72          | 0.05 | 3.66       | 1.83 |                    |
|         | 13     | 0.06               | 0.19               | -0.10         | 0.05  | 0.23          | 0.00 | 3.68       | 1.84 |                    |
|         | 14     | -1.10              | 0.35               | -0.15         | 1.35  | 1.16          | 0.12 | 3.71       | 1.86 |                    |
|         | 15     | -0.75              | 0.58               | -0.11         | 0.91  | 0.95          | 0.08 | 3.74       | 1.87 |                    |
|         | 16     | -2.98              | -0.23              | -0.47         | 9.16  | 3.03          | 0.84 | 3.75       | 1.88 |                    |
|         | 17     | -4.24              | 0.00               | -0.45         | 18.21 | 4.27          | 1.70 | 3.82       | 1.91 |                    |
|         | 18     | -0.64              | 0.25               | -0.03         | 0.47  | 0.68          | 0.04 | 3.88       | 1.94 |                    |

|         | 19 | -1.03 | -0.49 | -0.11 | 1.32  | 1.15 | 0.13 | 3.93 | 1.96 |      |
|---------|----|-------|-------|-------|-------|------|------|------|------|------|
|         | 20 | -0.78 | 0.35  | -0.36 | 0.86  | 0.93 | 0.08 | 3.96 | 1.98 |      |
| DNBDC3  | 1  | -0.01 | 0.01  | 0.00  | 0.00  | 0.01 | 0.00 | 2.76 | 1.38 | 3.79 |
|         | 2  | 0.53  | -1.82 | -0.01 | 3.59  | 1.89 | 0.25 | 2.79 | 1.40 |      |
|         | 3  | 4.17  | 0.23  | -0.33 | 17.52 | 4.19 | 1.21 | 2.82 | 1.41 |      |
|         | 4  | 0.16  | 0.03  | -0.01 | 0.03  | 0.16 | 0.00 | 2.83 | 1.41 |      |
|         | 5  | -0.25 | -0.14 | 0.19  | 0.12  | 0.34 | 0.01 | 2.94 | 1.47 |      |
|         | 6  | 0.01  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 2.99 | 0.00 |      |
|         | 7  | 0.00  | -0.01 | 0.00  | 0.00  | 0.00 | 0.00 | 3.08 | 0.00 |      |
|         | 8  | -0.42 | 0.06  | 0.52  | 0.45  | 0.67 | 0.03 | 3.14 | 1.57 |      |
|         | 9  | 0.28  | 0.54  | -0.03 | 0.37  | 0.61 | 0.03 | 3.39 | 1.69 |      |
|         | 10 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 3.44 | 0.00 |      |
|         | 11 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 3.52 | 0.00 |      |
|         | 12 | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 3.56 | 0.00 |      |
|         | 13 | -0.13 | -0.14 | 0.19  | 0.07  | 0.27 | 0.01 | 3.60 | 1.80 |      |
|         | 14 | 0.00  | -0.01 | 0.00  | 0.00  | 0.00 | 0.00 | 3.64 | 0.00 |      |
|         | 15 | 0.51  | -0.43 | -0.12 | 0.46  | 0.68 | 0.04 | 3.66 | 1.83 |      |
|         | 16 | 0.07  | -0.01 | -0.01 | 0.01  | 0.07 | 0.00 | 3.67 | 1.83 |      |
|         | 17 | 2.78  | -0.75 | -0.35 | 8.41  | 2.90 | 0.76 | 3.68 | 1.84 |      |
|         | 18 | 6.57  | 0.68  | -0.68 | 44.05 | 6.64 | 3.99 | 3.70 | 1.85 |      |
|         | 19 | 0.02  | 0.02  | 0.00  | 0.00  | 0.03 | 0.00 | 3.80 | 1.90 |      |
|         | 20 | 0.49  | -1.63 | -0.07 | 2.90  | 1.70 | 0.27 | 3.82 | 1.91 |      |
| DNBDC4a | 1  | 0.00  | -0.07 | -0.01 | 0.00  | 0.07 | 0.00 | 2.53 | 1.26 | 3.09 |
|         | 2  | 0.31  | -1.59 | 0.07  | 2.61  | 1.62 | 0.17 | 2.60 | 1.30 |      |
|         | 3  | 0.11  | -0.12 | -0.01 | 0.03  | 0.16 | 0.00 | 2.68 | 1.34 |      |
|         | 4  | 0.22  | -0.52 | 0.10  | 0.33  | 0.57 | 0.02 | 2.69 | 1.34 |      |
|         | 5  | 0.73  | 0.32  | 0.17  | 0.67  | 0.82 | 0.05 | 2.81 | 1.40 |      |
|         | 6  | -0.16 | -0.04 | -0.02 | 0.03  | 0.17 | 0.00 | 2.82 | 1.41 |      |
|         | 7  | 1.92  | 0.15  | 0.23  | 3.75  | 1.94 | 0.26 | 2.85 | 1.42 |      |
|         | 8  | -0.08 | -0.01 | -0.02 | 0.01  | 0.09 | 0.00 | 2.87 | 1.43 |      |
|         | 9  | 0.03  | 0.00  | -0.01 | 0.00  | 0.04 | 0.00 | 3.20 | 1.60 |      |
|         | 10 | 0.04  | -0.01 | -0.01 | 0.00  | 0.04 | 0.00 | 3.25 | 1.62 |      |
|         | 11 | -0.27 | 0.01  | 0.03  | 0.08  | 0.28 | 0.01 | 3.26 | 1.63 |      |
|         | 12 | 0.02  | -0.01 | -0.01 | 0.00  | 0.02 | 0.00 | 3.28 | 1.64 |      |
|         | 13 | 0.12  | 0.08  | 0.02  | 0.02  | 0.14 | 0.00 | 3.28 | 1.64 |      |
|         | 14 | 0.53  | 0.20  | 0.34  | 0.43  | 0.66 | 0.04 | 3.30 | 1.65 |      |
|         | 15 | -1.57 | -0.25 | -0.15 | 2.55  | 1.60 | 0.21 | 3.38 | 1.69 |      |
|         | 16 | -0.49 | -0.06 | -0.08 | 0.25  | 0.50 | 0.02 | 3.43 | 1.72 |      |
|         | 17 | -3.78 | -0.43 | -0.55 | 14.81 | 3.85 | 1.25 | 3.44 | 1.72 |      |
|         | 18 | -0.04 | 0.00  | -0.01 | 0.00  | 0.04 | 0.00 | 3.44 | 1.72 |      |
|         | 19 | -0.88 | 0.03  | -0.25 | 0.85  | 0.92 | 0.07 | 3.60 | 1.80 |      |
|         | 20 | 0.06  | 0.00  | 0.00  | 0.00  | 0.06 | 0.00 | 3.64 | 1.82 |      |
| DNBDC4b | 1  | 0.12  | -1.72 | 0.00  | 2.97  | 1.72 | 0.17 | 2.34 | 1.17 | 3.40 |
|         | 2  | -0.16 | -0.51 | -0.01 | 0.29  | 0.54 | 0.02 | 2.35 | 1.18 |      |
|         | 3  | -1.13 | -0.31 | 0.07  | 1.39  | 1.18 | 0.09 | 2.52 | 1.26 |      |

|      | 4  | 0.52  | -0.57 | -0.05 | 0.60  | 0.77 | 0.04 | 2.54 | 1.27 |      |
|------|----|-------|-------|-------|-------|------|------|------|------|------|
|      | 5  | -3.56 | 0.04  | 0.10  | 12.66 | 3.56 | 0.86 | 2.76 | 1.38 |      |
|      | 6  | 1.56  | 0.05  | -0.01 | 2.45  | 1.56 | 0.17 | 2.78 | 1.39 |      |
|      | 7  | 0.27  | 0.29  | -0.12 | 0.17  | 0.41 | 0.01 | 2.94 | 1.47 |      |
|      | 8  | -0.94 | -0.17 | 0.51  | 1.17  | 1.08 | 0.09 | 3.00 | 1.50 |      |
|      | 9  | -0.42 | 0.32  | 0.32  | 0.38  | 0.61 | 0.03 | 3.06 | 1.53 |      |
|      | 10 | 0.08  | -0.07 | 0.26  | 0.08  | 0.29 | 0.01 | 3.16 | 1.58 |      |
|      | 11 | 0.04  | -0.28 | 0.03  | 0.08  | 0.28 | 0.01 | 3.28 | 1.64 |      |
|      | 12 | -0.07 | -0.15 | -0.06 | 0.03  | 0.18 | 0.00 | 3.32 | 1.66 |      |
|      | 13 | -0.13 | -0.54 | -0.04 | 0.30  | 0.55 | 0.03 | 3.36 | 1.68 |      |
|      | 14 | -0.56 | 0.33  | -0.11 | 0.44  | 0.66 | 0.04 | 3.43 | 1.71 |      |
|      | 15 | -0.25 | 0.42  | 0.12  | 0.26  | 0.51 | 0.02 | 3.44 | 1.72 |      |
|      | 16 | 0.04  | 0.56  | -0.07 | 0.32  | 0.56 | 0.03 | 3.46 | 1.73 |      |
|      | 17 | 2.33  | -0.14 | -0.16 | 5.46  | 2.34 | 0.47 | 3.51 | 1.75 |      |
|      | 18 | -6.58 | -0.04 | 0.50  | 43.48 | 6.59 | 3.77 | 3.54 | 1.77 |      |
|      | 19 | 0.56  | 0.68  | -0.12 | 0.80  | 0.89 | 0.07 | 3.57 | 1.79 |      |
|      | 20 | 0.84  | 0.84  | -0.09 | 1.42  | 1.19 | 0.13 | 3.61 | 1.80 |      |
| BDC5 | 1  | -0.03 | -0.61 | -0.02 | 0.37  | 0.61 | 0.02 | 1.93 | 0.96 | 2.60 |
|      | 2  | -0.03 | -1.83 | 0.06  | 3.37  | 1.84 | 0.16 | 1.93 | 0.97 |      |
|      | 3  | 0.06  | 0.20  | 0.02  | 0.04  | 0.21 | 0.00 | 2.15 | 1.07 |      |
|      | 4  | 0.40  | 0.79  | 0.06  | 0.79  | 0.89 | 0.04 | 2.17 | 1.09 |      |
|      | 5  | 3.69  | -0.12 | 0.15  | 13.65 | 3.69 | 0.88 | 2.64 | 1.32 |      |
|      | 6  | -0.90 | 0.01  | -0.03 | 0.81  | 0.90 | 0.05 | 2.66 | 1.33 |      |
|      | 7  | 0.13  | -0.01 | 0.00  | 0.02  | 0.13 | 0.00 | 2.77 | 1.39 |      |
|      | 8  | 0.77  | -0.03 | 0.03  | 0.59  | 0.77 | 0.04 | 2.84 | 1.42 |      |
|      | 9  | -1.34 | 0.04  | 0.18  | 1.82  | 1.35 | 0.13 | 2.85 | 1.43 |      |
|      | 10 | 1.62  | 0.04  | -0.72 | 3.13  | 1.77 | 0.22 | 2.87 | 1.43 |      |
|      | 11 | 0.04  | 0.01  | -0.04 | 0.00  | 0.06 | 0.00 | 2.95 | 1.47 |      |
|      | 12 | 0.00  | 0.25  | 0.10  | 0.07  | 0.26 | 0.01 | 2.98 | 1.49 |      |
|      | 13 | 0.04  | 0.00  | 0.01  | 0.00  | 0.05 | 0.00 | 3.09 | 1.54 |      |
|      | 14 | 0.55  | -0.29 | 0.02  | 0.39  | 0.62 | 0.03 | 3.16 | 1.58 |      |
|      | 15 | 0.03  | 0.01  | -0.01 | 0.00  | 0.03 | 0.00 | 3.19 | 1.60 |      |
|      | 16 | 0.59  | 0.22  | 0.19  | 0.43  | 0.66 | 0.03 | 3.30 | 1.65 |      |
|      | 17 | -0.23 | -0.04 | -0.04 | 0.05  | 0.23 | 0.00 | 3.30 | 1.65 |      |
|      | 18 | 0.79  | 0.40  | -0.13 | 0.80  | 0.90 | 0.07 | 3.33 | 1.67 |      |
|      | 19 | 0.16  | 0.07  | -0.01 | 0.03  | 0.17 | 0.00 | 3.35 | 1.68 |      |
|      | 20 | 0.02  | -0.03 | 0.03  | 0.00  | 0.05 | 0.00 | 3.38 | 1.69 |      |

DNB

|         |                 | J                   | - 0, (- ) -             |                     |      |      |      |
|---------|-----------------|---------------------|-------------------------|---------------------|------|------|------|
|         | $E(\mathbf{M})$ | $E(\mathbf{M}^{+})$ | $E^{+}(\mathbf{M}^{+})$ | $E^{+}(\mathbf{M})$ | EEP  | EAV  | λ    |
| DNBDC1  | -2123.88        | -2123.92            | -2123.92                | -2123.88            | 0.04 | 0.03 | 0.24 |
| DNBDC2  | -2277.35        | -2277.38            | -2277.39                | -2277.34            | 0.04 | 0.04 | 0.22 |
| DNBDC3  | -2430.80        | -2430.84            | -2430.85                | -2430.80            | 0.05 | 0.04 | 0.22 |
| DNBDC4a | -2506.93        | -2506.97            | -2506.97                | -2506.92            | 0.05 | 0.04 | 0.24 |
| DNBDC4b | -2584.25        | -2584.31            | -2584.31                | -2584.25            | 0.06 | 0.05 | 0.21 |
| DNBDC5  | -2737.70        | -2737.76            | -2737.77                | -2737.70            | 0.07 | 0.06 | 0.20 |
|         |                 |                     |                         |                     |      |      |      |

**Table S6**. The calculated reorganization energy  $\lambda(eV)$  for **DNBDC1~ DNBDC5**.

|               |       | DNBDC1                | DNBDC2                | DNBDC3                | DNBDC4a               | DNBDC4b               | DNBDC5                |
|---------------|-------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 6.5 Å         | $k_1$ | $5.45 \times 10^{16}$ | 7.86×10 <sup>16</sup> | $6.20 \times 10^{16}$ | 3.34×10 <sup>16</sup> | $5.42 \times 10^{16}$ | 3.54×10 <sup>16</sup> |
| 8.5 Å         | $k_2$ | $2.09 \times 10^{16}$ | $6.44 \times 10^{16}$ | $5.71 \times 10^{16}$ | $1.32 \times 10^{16}$ | 4.31×10 <sup>16</sup> | $2.91 \times 10^{16}$ |
| 14.9 <i>Å</i> | $k_3$ | 6.14×10 <sup>16</sup> | $1.03 \times 10^{17}$ | $1.05 \times 10^{17}$ | 3.18×10 <sup>16</sup> | $7.31 \times 10^{16}$ | 4.00×10 <sup>16</sup> |

**Table S7**. The calculated charge hopping rates for **DNBDC1~ DNBDC5** at 6.5 Å, 8.5 Å and 14.9 Å by Marcus semi-classical equation.

**Table S8**. The transition dipole moment of x ( $\mu_x$ ), y ( $\mu_y$ ) and z orientations ( $\mu_z$ ) (a.u.), the resultant transition dipole moment  $\mu_{tr}$  (a.u.) and orbital energy difference  $\Delta E$  (eV), and the electronic coupling values of each states V (eV), afterwards calculated the total electronic coupling values  $V_{\text{total}}$  (eV) at 8.5 Å.

| V <sub>2</sub> -8.5 Å | States | $\mu_{\rm x}$ | $\mu_{\rm y}$ | $\mu_{\rm z}$ | Dip.S | $\mu_{ m tr}$ | OSC  | E    | V    | V <sub>total</sub> |
|-----------------------|--------|---------------|---------------|---------------|-------|---------------|------|------|------|--------------------|
| DNBDC1                | 1      | -0.32         | -1.52         | 0.04          | 2.40  | 1.55          | 0.08 | 1.31 | 0.66 | 2.48               |
|                       | 2      | 0.00          | 0.04          | 0.01          | 0.00  | 0.04          | 0.00 | 1.62 | 0.81 |                    |
|                       | 3      | -0.01         | 0.02          | 0.00          | 0.00  | 0.02          | 0.00 | 1.87 | 0.93 |                    |
|                       | 4      | 0.01          | 0.06          | -0.02         | 0.00  | 0.06          | 0.00 | 2.14 | 1.07 |                    |
|                       | 5      | -0.17         | 1.35          | 0.02          | 1.86  | 1.36          | 0.10 | 2.19 | 1.10 |                    |
|                       | 6      | 0.05          | 0.03          | 0.00          | 0.00  | 0.06          | 0.00 | 2.42 | 1.21 |                    |
|                       | 7      | -0.22         | 0.03          | 0.01          | 0.05  | 0.23          | 0.00 | 2.60 | 1.30 |                    |
|                       | 8      | 3.73          | -0.20         | -0.22         | 14.01 | 3.74          | 0.90 | 2.62 | 1.31 |                    |
|                       | 9      | 2.53          | 0.12          | 0.43          | 6.60  | 2.57          | 0.43 | 2.68 | 1.34 |                    |
|                       | 10     | -0.69         | 0.03          | -0.55         | 0.79  | 0.89          | 0.05 | 2.70 | 1.35 |                    |
|                       | 11     | -0.12         | 0.07          | 0.00          | 0.02  | 0.14          | 0.00 | 2.75 | 1.37 |                    |
|                       | 12     | 0.16          | -0.35         | -0.28         | 0.22  | 0.47          | 0.02 | 2.76 | 1.38 |                    |
|                       | 13     | -0.33         | 0.41          | -0.05         | 0.28  | 0.53          | 0.02 | 2.90 | 1.45 |                    |
|                       | 14     | -0.06         | 0.05          | 0.01          | 0.01  | 0.08          | 0.00 | 2.91 | 1.46 |                    |
|                       | 15     | 0.05          | 0.00          | 0.00          | 0.00  | 0.05          | 0.00 | 2.98 | 1.49 |                    |
|                       | 16     | -0.26         | -0.07         | -0.02         | 0.07  | 0.27          | 0.01 | 3.07 | 1.53 |                    |
|                       | 17     | -0.80         | -0.30         | -0.08         | 0.74  | 0.86          | 0.06 | 3.09 | 1.54 |                    |
|                       | 18     | 0.81          | -0.09         | 0.05          | 0.67  | 0.82          | 0.05 | 3.11 | 1.56 |                    |
|                       | 19     | -0.62         | -0.50         | -0.08         | 0.64  | 0.80          | 0.05 | 3.20 | 1.60 |                    |
|                       | 20     | -3.74         | -0.87         | -0.29         | 14.83 | 3.85          | 1.18 | 3.26 | 1.63 |                    |
| DNBDC2                | 1      | -0.36         | 0.02          | 0.05          | 0.14  | 0.37          | 0.01 | 2.59 | 1.30 | 3.90               |
|                       | 2      | -3.82         | 0.18          | 0.63          | 15.05 | 3.88          | 0.99 | 2.68 | 1.34 |                    |
|                       | 3      | 0.16          | -0.44         | -0.03         | 0.22  | 0.47          | 0.02 | 2.91 | 1.45 |                    |
|                       | 4      | 0.46          | 0.01          | -0.06         | 0.21  | 0.46          | 0.02 | 2.95 | 1.48 |                    |
|                       | 5      | -0.33         | -0.03         | 0.04          | 0.11  | 0.33          | 0.01 | 2.97 | 1.48 |                    |
|                       | 6      | 0.16          | 0.87          | -0.05         | 0.78  | 0.89          | 0.06 | 3.06 | 1.53 |                    |
|                       | 7      | -0.03         | -0.19         | 0.03          | 0.04  | 0.19          | 0.00 | 3.14 | 1.57 |                    |
|                       | 8      | -0.23         | -0.77         | -0.03         | 0.65  | 0.81          | 0.05 | 3.19 | 1.59 |                    |
|                       | 9      | -0.08         | -0.58         | 0.07          | 0.35  | 0.59          | 0.03 | 3.20 | 1.60 |                    |
|                       | 10     | -0.38         | -0.60         | 0.02          | 0.50  | 0.71          | 0.04 | 3.37 | 1.69 |                    |
|                       | 11     | -0.10         | 0.20          | 0.01          | 0.05  | 0.22          | 0.00 | 3.54 | 1.77 |                    |
|                       | 12     | -0.49         | -0.01         | 0.04          | 0.25  | 0.50          | 0.02 | 3.56 | 1.78 |                    |
|                       | 13     | -1.29         | 0.03          | 0.16          | 1.70  | 1.30          | 0.15 | 3.62 | 1.81 |                    |
|                       | 14     | -3.25         | 0.22          | 0.53          | 10.91 | 3.30          | 0.97 | 3.64 | 1.82 |                    |
|                       | 15     | -0.45         | -0.10         | 0.07          | 0.22  | 0.47          | 0.02 | 3.65 | 1.82 |                    |
|                       | 16     | -5.16         | 0.24          | 0.73          | 27.27 | 5.22          | 2.46 | 3.68 | 1.84 |                    |
|                       | 17     | 1.41          | -0.01         | -0.22         | 2.02  | 1.42          | 0.18 | 3.70 | 1.85 |                    |
|                       | 18     | 0.53          | 0.21          | -0.08         | 0.33  | 0.58          | 0.03 | 3.73 | 1.87 |                    |

|         | 19 | -0.83 | -0.13 | 0.29  | 0.78  | 0.89 | 0.07 | 3.86 | 1.93 |      |
|---------|----|-------|-------|-------|-------|------|------|------|------|------|
|         | 20 | -0.38 | 0.44  | 0.20  | 0.38  | 0.62 | 0.04 | 3.89 | 1.94 |      |
| DNBDC3  | 1  | -0.03 | -1.58 | 0.01  | 2.49  | 1.58 | 0.15 | 2.51 | 1.26 | 3.64 |
|         | 2  | 0.00  | -0.02 | 0.00  | 0.00  | 0.02 | 0.00 | 2.56 | 1.28 |      |
|         | 3  | -0.02 | -0.01 | -0.01 | 0.00  | 0.02 | 0.00 | 2.59 | 1.29 |      |
|         | 4  | -4.13 | 0.04  | 0.61  | 17.41 | 4.17 | 1.16 | 2.72 | 1.36 |      |
|         | 5  | 0.03  | 0.28  | 0.00  | 0.08  | 0.28 | 0.01 | 2.83 | 1.41 |      |
|         | 6  | 0.10  | 1.03  | -0.01 | 1.07  | 1.04 | 0.08 | 2.85 | 1.43 |      |
|         | 7  | -0.40 | 0.04  | -0.17 | 0.19  | 0.44 | 0.01 | 3.00 | 1.50 |      |
|         | 8  | 0.05  | 0.00  | 0.01  | 0.00  | 0.05 | 0.00 | 3.04 | 1.52 |      |
|         | 9  | 0.01  | 0.43  | -0.01 | 0.19  | 0.43 | 0.02 | 3.34 | 1.67 |      |
|         | 10 | -0.11 | -0.38 | 0.02  | 0.16  | 0.40 | 0.01 | 3.39 | 1.70 |      |
|         | 11 | -0.01 | 0.02  | 0.00  | 0.00  | 0.02 | 0.00 | 3.42 | 1.71 |      |
|         | 12 | 0.01  | 0.00  | 0.01  | 0.00  | 0.01 | 0.00 | 3.46 | 1.73 |      |
|         | 13 | -0.08 | -0.04 | 0.01  | 0.01  | 0.09 | 0.00 | 3.50 | 1.75 |      |
|         | 14 | 0.08  | 0.01  | -0.01 | 0.01  | 0.08 | 0.00 | 3.51 | 1.76 |      |
|         | 15 | -0.13 | 0.00  | 0.01  | 0.02  | 0.13 | 0.00 | 3.52 | 1.76 |      |
|         | 16 | 3.35  | -0.04 | -0.44 | 11.45 | 3.38 | 0.99 | 3.54 | 1.77 |      |
|         | 17 | 6.51  | -0.03 | -0.79 | 43.07 | 6.56 | 3.77 | 3.58 | 1.79 |      |
|         | 18 | -0.28 | 0.03  | 0.04  | 0.08  | 0.28 | 0.01 | 3.60 | 1.80 |      |
|         | 19 | 0.00  | 0.68  | 0.00  | 0.46  | 0.68 | 0.04 | 3.72 | 1.86 |      |
|         | 20 | -0.01 | -1.57 | 0.01  | 2.45  | 1.57 | 0.22 | 3.73 | 1.86 |      |
| DNBDC4a | 1  | -0.26 | -1.79 | -0.02 | 3.28  | 1.81 | 0.05 | 0.68 | 0.34 | 1.94 |
|         | 2  | 0.05  | -0.48 | -0.12 | 0.25  | 0.50 | 0.01 | 1.31 | 0.65 |      |
|         | 3  | 0.60  | -0.22 | 0.31  | 0.50  | 0.71 | 0.02 | 1.36 | 0.68 |      |
|         | 4  | -0.28 | -0.06 | 0.00  | 0.08  | 0.29 | 0.00 | 1.70 | 0.85 |      |
|         | 5  | -0.51 | 0.35  | -0.16 | 0.41  | 0.64 | 0.02 | 1.81 | 0.91 |      |
|         | 6  | -1.21 | -0.12 | -0.24 | 1.54  | 1.24 | 0.07 | 1.94 | 0.97 |      |
|         | 7  | 0.92  | 0.56  | 0.22  | 1.21  | 1.10 | 0.06 | 1.96 | 0.98 |      |
|         | 8  | 1.22  | 0.44  | -0.08 | 1.70  | 1.30 | 0.09 | 2.11 | 1.05 |      |
|         | 9  | 0.51  | 0.72  | 0.10  | 0.78  | 0.88 | 0.04 | 2.26 | 1.13 |      |
|         | 10 | 0.55  | -0.50 | 0.09  | 0.55  | 0.74 | 0.03 | 2.27 | 1.14 |      |
|         | 11 | -1.14 | 0.44  | 0.01  | 1.49  | 1.22 | 0.09 | 2.34 | 1.17 |      |
|         | 12 | 0.34  | 1.03  | 0.05  | 1.18  | 1.09 | 0.07 | 2.42 | 1.21 |      |
|         | 13 | -0.16 | -0.37 | -0.02 | 0.16  | 0.40 | 0.01 | 2.44 | 1.22 |      |
|         | 14 | -0.11 | -0.98 | -0.17 | 1.00  | 1.00 | 0.06 | 2.48 | 1.24 |      |
|         | 15 | 0.26  | 0.22  | -0.15 | 0.14  | 0.37 | 0.01 | 2.53 | 1.27 |      |
|         | 16 | -0.27 | -0.32 | 0.11  | 0.19  | 0.43 | 0.01 | 2.54 | 1.27 |      |
|         | 17 | 0.46  | -0.13 | 0.03  | 0.23  | 0.48 | 0.01 | 2.60 | 1.30 |      |
|         | 18 | -0.48 | -1.73 | -0.06 | 3.22  | 1.80 | 0.21 | 2.70 | 1.35 |      |
|         | 19 | 0.72  | 0.48  | -0.31 | 0.85  | 0.92 | 0.06 | 2.75 | 1.38 |      |
|         | 20 | -0.19 | 0.26  | -0.12 | 0.12  | 0.34 | 0.01 | 2.80 | 1.40 |      |
| DNBDC4b | 1  | -0.11 | 1.41  | 0.00  | 1.99  | 1.41 | 0.09 | 1.83 | 0.91 | 3.04 |
|         | 2  | 0.01  | -0.18 | 0.01  | 0.03  | 0.18 | 0.00 | 2.05 | 1.03 |      |
|         | 3  | 0.03  | 0.14  | -0.01 | 0.02  | 0.14 | 0.00 | 2.29 | 1.15 |      |

|        | 4  | 0.11  | 0.00  | -0.08 | 0.02  | 0.13 | 0.00 | 2.36 | 1.18 |      |
|--------|----|-------|-------|-------|-------|------|------|------|------|------|
|        | 5  | -0.10 | -1.33 | -0.01 | 1.78  | 1.33 | 0.11 | 2.51 | 1.25 |      |
|        | 6  | 4.23  | 0.03  | 0.40  | 18.04 | 4.25 | 1.19 | 2.69 | 1.34 |      |
|        | 7  | -0.47 | -0.13 | 0.41  | 0.40  | 0.64 | 0.03 | 2.83 | 1.41 |      |
|        | 8  | -0.13 | -0.14 | 0.13  | 0.05  | 0.23 | 0.00 | 2.88 | 1.44 |      |
|        | 9  | 0.04  | -0.07 | -0.02 | 0.01  | 0.08 | 0.00 | 2.92 | 1.46 |      |
|        | 10 | -0.08 | 0.14  | -0.09 | 0.03  | 0.19 | 0.00 | 2.98 | 1.49 |      |
|        | 11 | 0.27  | 0.32  | 0.03  | 0.18  | 0.42 | 0.01 | 3.12 | 1.56 |      |
|        | 12 | -0.26 | 0.41  | -0.04 | 0.23  | 0.48 | 0.02 | 3.17 | 1.59 |      |
|        | 13 | 0.03  | 0.52  | -0.03 | 0.27  | 0.52 | 0.02 | 3.19 | 1.60 |      |
|        | 14 | -0.31 | 0.43  | -0.01 | 0.28  | 0.53 | 0.02 | 3.25 | 1.62 |      |
|        | 15 | 0.05  | -0.26 | -0.06 | 0.07  | 0.27 | 0.01 | 3.30 | 1.65 |      |
|        | 16 | -1.04 | -0.08 | -0.05 | 1.08  | 1.04 | 0.09 | 3.33 | 1.66 |      |
|        | 17 | -0.11 | 0.04  | 0.02  | 0.01  | 0.11 | 0.00 | 3.39 | 1.69 |      |
|        | 18 | -6.21 | -0.05 | -0.56 | 38.82 | 6.23 | 3.24 | 3.40 | 1.70 |      |
|        | 19 | 1.78  | -0.64 | 0.19  | 3.59  | 1.89 | 0.30 | 3.43 | 1.71 |      |
|        | 20 | -2.39 | -1.00 | -0.16 | 6.75  | 2.60 | 0.58 | 3.48 | 1.74 |      |
| DNBDC5 | 1  | -0.32 | -1.52 | 0.04  | 2.40  | 1.55 | 0.08 | 1.31 | 0.66 | 2.36 |
|        | 2  | 0.00  | 0.04  | 0.01  | 0.00  | 0.04 | 0.00 | 1.62 | 0.81 |      |
|        | 3  | -0.01 | 0.02  | 0.00  | 0.00  | 0.02 | 0.00 | 1.87 | 0.93 |      |
|        | 4  | 0.01  | 0.06  | -0.02 | 0.00  | 0.06 | 0.00 | 2.14 | 1.07 |      |
|        | 5  | -0.17 | 1.35  | 0.02  | 1.86  | 1.36 | 0.10 | 2.19 | 1.10 |      |
|        | 6  | 0.05  | 0.03  | 0.00  | 0.00  | 0.06 | 0.00 | 2.42 | 1.21 |      |
|        | 7  | -0.22 | 0.03  | 0.01  | 0.05  | 0.23 | 0.00 | 2.60 | 1.30 |      |
|        | 8  | 3.73  | -0.20 | -0.22 | 14.01 | 3.74 | 0.90 | 2.62 | 1.31 |      |
|        | 9  | 2.53  | 0.12  | 0.43  | 6.60  | 2.57 | 0.43 | 2.68 | 1.34 |      |
|        | 10 | -0.69 | 0.03  | -0.55 | 0.79  | 0.89 | 0.05 | 2.70 | 1.35 |      |
|        | 11 | -0.12 | 0.07  | 0.00  | 0.02  | 0.14 | 0.00 | 2.75 | 1.37 |      |
|        | 12 | 0.16  | -0.35 | -0.28 | 0.22  | 0.47 | 0.02 | 2.76 | 1.38 |      |
|        | 13 | -0.33 | 0.41  | -0.05 | 0.28  | 0.53 | 0.02 | 2.90 | 1.45 |      |
|        | 14 | -0.06 | 0.05  | 0.01  | 0.01  | 0.08 | 0.00 | 2.91 | 1.46 |      |
|        | 15 | 0.05  | 0.00  | 0.00  | 0.00  | 0.05 | 0.00 | 2.98 | 1.49 |      |
|        | 16 | -0.26 | -0.07 | -0.02 | 0.07  | 0.27 | 0.01 | 3.07 | 1.53 |      |
|        | 17 | -0.80 | -0.30 | -0.08 | 0.74  | 0.86 | 0.06 | 3.09 | 1.54 |      |
|        | 18 | 0.81  | -0.09 | 0.05  | 0.67  | 0.82 | 0.05 | 3.11 | 1.56 |      |
|        | 19 | -0.62 | -0.50 | -0.08 | 0.64  | 0.80 | 0.05 | 3.20 | 1.60 |      |
|        | 20 | -3.74 | -0.87 | -0.29 | 14.83 | 3.85 | 1.18 | 3.26 | 1.63 |      |

**Table S9.** The transition dipole moment of x ( $\mu_x$ ), y ( $\mu_y$ ) and z orientations ( $\mu_z$ ) (a.u.), the resultant transition dipole moment  $\mu_{tr}$  (a.u.) and orbital energy difference  $\Delta E$  (eV), and the electronic coupling values of each states V (eV), afterwards calculated the total electronic coupling values  $V_{\text{total}}$  (eV) at 14.9 Å.

| V <sub>3</sub> -14.9 Å | States | $\mu_{\rm x}$ | $\mu_{ m y}$ | $\mu_{\rm z}$ | Dip.S | $\mu_{ m tr}$ | OSC  | Е    | V    | $V_{\rm total}$ |
|------------------------|--------|---------------|--------------|---------------|-------|---------------|------|------|------|-----------------|
| DNBDC1                 | 1      | -3.58         | 1.70         | 0.42          | 15.87 | 3.98          | 1.06 | 2.73 | 1.37 | 4.25            |
|                        | 2      | 0.00          | 0.00         | 0.00          | 0.00  | 0.00          | 0.00 | 2.75 | 0.00 |                 |
|                        | 3      | 0.06          | 0.12         | -0.01         | 0.02  | 0.14          | 0.00 | 2.80 | 1.40 |                 |
|                        | 4      | 0.12          | 0.26         | -0.01         | 0.08  | 0.28          | 0.01 | 2.80 | 1.40 |                 |
|                        | 5      | 0.54          | 0.79         | -0.07         | 0.91  | 0.96          | 0.08 | 3.52 | 1.76 |                 |
|                        | 6      | -0.15         | -0.23        | 0.02          | 0.08  | 0.28          | 0.01 | 3.52 | 1.76 |                 |
|                        | 7      | -5.06         | 2.32         | 0.58          | 31.31 | 5.60          | 2.87 | 3.75 | 1.87 |                 |
|                        | 8      | -0.09         | 0.04         | 0.01          | 0.01  | 0.10          | 0.00 | 3.76 | 1.88 |                 |
|                        | 9      | -1.55         | 0.70         | 0.18          | 2.93  | 1.71          | 0.27 | 3.76 | 1.88 |                 |
|                        | 10     | -0.07         | 0.03         | 0.01          | 0.01  | 0.07          | 0.00 | 3.79 | 1.89 |                 |
|                        | 11     | -0.03         | 0.03         | 0.00          | 0.00  | 0.04          | 0.00 | 3.79 | 1.90 |                 |
|                        | 12     | 0.13          | -0.07        | -0.02         | 0.02  | 0.15          | 0.00 | 3.79 | 1.90 |                 |
|                        | 13     | -0.10         | 0.06         | 0.02          | 0.01  | 0.12          | 0.00 | 3.96 | 1.98 |                 |
|                        | 14     | 0.00          | 0.01         | 0.00          | 0.00  | 0.00          | 0.00 | 3.96 | 0.00 |                 |
|                        | 15     | 0.00          | 0.00         | 0.00          | 0.00  | 0.00          | 0.00 | 3.97 | 0.00 |                 |
|                        | 16     | -0.01         | 0.00         | 0.00          | 0.00  | 0.01          | 0.00 | 3.98 | 1.99 |                 |
|                        | 17     | 0.05          | 0.01         | -0.03         | 0.00  | 0.06          | 0.00 | 4.26 | 2.13 |                 |
|                        | 18     | -1.33         | -0.67        | 0.13          | 2.23  | 1.49          | 0.23 | 4.27 | 2.14 |                 |
|                        | 19     | 2.29          | -0.55        | -0.28         | 5.62  | 2.37          | 0.59 | 4.28 | 2.14 |                 |
|                        | 20     | 0.00          | -0.05        | -0.01         | 0.00  | 0.05          | 0.00 | 4.28 | 2.14 |                 |
| DNBDC2                 | 1      | 3.85          | -1.56        | -0.38         | 17.40 | 4.17          | 1.15 | 2.70 | 1.35 | 4.92            |
|                        | 2      | 0.44          | -0.21        | -0.07         | 0.24  | 0.49          | 0.02 | 2.72 | 1.36 |                 |
|                        | 3      | -0.23         | -0.42        | 0.03          | 0.23  | 0.48          | 0.02 | 2.97 | 1.49 |                 |
|                        | 4      | 0.19          | 0.36         | -0.04         | 0.17  | 0.41          | 0.01 | 2.98 | 1.49 |                 |
|                        | 5      | -0.64         | -1.01        | 0.11          | 1.43  | 1.20          | 0.11 | 3.17 | 1.59 |                 |
|                        | 6      | 0.42          | 0.84         | -0.09         | 0.88  | 0.94          | 0.07 | 3.17 | 1.59 |                 |
|                        | 7      | -1.39         | 0.47         | 0.11          | 2.16  | 1.47          | 0.19 | 3.63 | 1.82 |                 |
|                        | 8      | -0.70         | 0.33         | 0.08          | 0.60  | 0.77          | 0.05 | 3.65 | 1.82 |                 |
|                        | 9      | 6.59          | -2.49        | -0.65         | 50.03 | 7.07          | 4.51 | 3.68 | 1.84 |                 |
|                        | 10     | -1.40         | 0.60         | 0.12          | 2.34  | 1.53          | 0.21 | 3.71 | 1.86 |                 |
|                        | 11     | 1.18          | -0.37        | -0.14         | 1.56  | 1.25          | 0.14 | 3.72 | 1.86 |                 |
|                        | 12     | -0.49         | 0.28         | 0.08          | 0.33  | 0.57          | 0.03 | 3.73 | 1.87 |                 |
|                        | 13     | -0.20         | 0.15         | 0.03          | 0.06  | 0.25          | 0.01 | 3.76 | 1.88 |                 |
|                        | 14     | -0.22         | 0.13         | 0.04          | 0.07  | 0.26          | 0.01 | 3.90 | 1.95 |                 |
|                        | 15     | -0.17         | 0.02         | 0.05          | 0.03  | 0.17          | 0.00 | 3.91 | 1.96 |                 |
|                        | 16     | 0.03          | -0.23        | 0.00          | 0.05  | 0.23          | 0.01 | 3.92 | 1.96 |                 |
|                        | 17     | -0.62         | -1.54        | 0.09          | 2.75  | 1.66          | 0.27 | 4.03 | 2.01 |                 |

|         | 18 | 0.77  | 0.91  | -0.12 | 1.44  | 1.20 | 0.14 | 4.04 | 2.02 |      |
|---------|----|-------|-------|-------|-------|------|------|------|------|------|
|         | 19 | -0.97 | -1.38 | 0.15  | 2.87  | 1.69 | 0.29 | 4.06 | 2.03 |      |
|         | 20 | 1.79  | -1.43 | -0.15 | 5.25  | 2.29 | 0.52 | 4.07 | 2.04 |      |
| DNBDC3  | 1  | 0.43  | 0.74  | 0.10  | 0.74  | 0.86 | 0.05 | 2.59 | 1.30 | 4.05 |
|         | 2  | -1.01 | -1.69 | -0.23 | 3.94  | 1.98 | 0.25 | 2.60 | 1.30 |      |
|         | 3  | -4.41 | 1.39  | -0.37 | 21.50 | 4.64 | 1.44 | 2.73 | 1.37 |      |
|         | 4  | 0.16  | -0.05 | 0.02  | 0.03  | 0.17 | 0.00 | 2.75 | 1.38 |      |
|         | 5  | 1.28  | 0.05  | 0.09  | 1.64  | 1.28 | 0.14 | 3.48 | 1.74 |      |
|         | 6  | -1.05 | 0.01  | -0.08 | 1.10  | 1.05 | 0.09 | 3.50 | 1.75 |      |
|         | 7  | 0.94  | 0.20  | 0.12  | 0.94  | 0.97 | 0.08 | 3.51 | 1.76 |      |
|         | 8  | 0.98  | 0.28  | 0.13  | 1.06  | 1.03 | 0.09 | 3.52 | 1.76 |      |
|         | 9  | -0.38 | 0.12  | -0.03 | 0.16  | 0.40 | 0.01 | 3.53 | 1.77 |      |
|         | 10 | -1.07 | 0.45  | -0.12 | 1.36  | 1.17 | 0.12 | 3.54 | 1.77 |      |
|         | 11 | -3.52 | 1.03  | -0.28 | 13.50 | 3.67 | 1.17 | 3.55 | 1.78 |      |
|         | 12 | 0.28  | -0.03 | 0.03  | 0.08  | 0.28 | 0.01 | 3.56 | 1.78 |      |
|         | 13 | 7.35  | -1.97 | 0.66  | 58.29 | 7.63 | 5.13 | 3.59 | 1.79 |      |
|         | 14 | -0.01 | -0.01 | -0.01 | 0.00  | 0.02 | 0.00 | 3.65 | 1.82 |      |
|         | 15 | -0.90 | 2.05  | 0.00  | 4.99  | 2.23 | 0.46 | 3.73 | 1.86 |      |
|         | 16 | 0.15  | -0.57 | -0.02 | 0.35  | 0.59 | 0.03 | 3.73 | 1.86 |      |
|         | 17 | 0.16  | 0.50  | 0.06  | 0.28  | 0.53 | 0.03 | 3.76 | 1.88 |      |
|         | 18 | 0.25  | 0.20  | 0.05  | 0.10  | 0.32 | 0.01 | 3.78 | 1.89 |      |
|         | 19 | -0.07 | 0.08  | -0.01 | 0.01  | 0.11 | 0.00 | 3.84 | 1.92 |      |
|         | 20 | 0.00  | -0.09 | 0.00  | 0.01  | 0.09 | 0.00 | 3.84 | 1.92 |      |
| DNBDC4a | 1  | 0.05  | -0.08 | 0.00  | 0.01  | 0.09 | 0.00 | 2.23 | 1.12 | 3.01 |
|         | 2  | 1.18  | -1.72 | 0.10  | 4.33  | 2.08 | 0.24 | 2.23 | 1.12 |      |
|         | 3  | 0.07  | -0.13 | 0.00  | 0.02  | 0.14 | 0.00 | 2.27 | 1.14 |      |
|         | 4  | 0.12  | -0.12 | 0.01  | 0.03  | 0.17 | 0.00 | 2.27 | 1.14 |      |
|         | 5  | -2.01 | -0.92 | -0.20 | 4.91  | 2.22 | 0.33 | 2.73 | 1.37 |      |
|         | 6  | -0.06 | -0.03 | 0.00  | 0.00  | 0.06 | 0.00 | 2.74 | 1.37 |      |
|         | 7  | -0.02 | 0.01  | 0.00  | 0.00  | 0.02 | 0.00 | 2.78 | 1.39 |      |
|         | 8  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00 | 2.78 | 0.00 |      |
|         | 9  | -0.08 | -0.02 | 0.00  | 0.01  | 0.08 | 0.00 | 3.16 | 1.58 |      |
|         | 10 | 0.09  | 0.05  | 0.02  | 0.01  | 0.10 | 0.00 | 3.16 | 1.58 |      |
|         | 11 | 0.39  | -0.29 | 0.04  | 0.24  | 0.49 | 0.02 | 3.19 | 1.60 |      |
|         | 12 | 0.32  | -0.21 | 0.03  | 0.15  | 0.39 | 0.01 | 3.20 | 1.60 |      |
|         | 13 | -4.24 | -1.90 | -0.42 | 21.78 | 4.67 | 1.73 | 3.25 | 1.63 |      |
|         | 14 | -0.12 | -0.05 | -0.01 | 0.02  | 0.13 | 0.00 | 3.28 | 1.64 |      |
|         | 15 | 0.07  | 0.03  | 0.01  | 0.01  | 0.08 | 0.00 | 3.29 | 1.65 |      |
|         | 16 | 0.17  | 0.10  | 0.03  | 0.04  | 0.20 | 0.00 | 3.33 | 1.66 |      |
|         | 17 | -0.04 | 0.01  | 0.04  | 0.00  | 0.06 | 0.00 | 3.50 | 1.75 |      |
|         | 18 | 0.16  | -0.04 | 0.01  | 0.03  | 0.16 | 0.00 | 3.51 | 1.75 |      |
|         | 19 | -2.60 | -1.12 | -0.26 | 8.06  | 2.84 | 0.72 | 5.64 | 1.82 |      |
| DNDDC4  | 20 | -0.46 | -0.20 | -0.05 | 0.26  | 0.51 | 0.02 | 5.65 | 1.82 | 3 AF |
| DNBDC4b | 1  | -1.98 | 0.45  | 0.05  | 4.13  | 2.03 | 0.06 | 0.56 | 0.28 | 5.95 |
|         | 2  | 0.01  | -0.92 | -0.14 | 0.87  | 0.93 | 0.01 | 0.60 | 0.30 |      |

|     | 3  | -2.72 | 0.14  | 0.02  | 7.40  | 2.72 | 0.26 | 1.45 | 0.73 |      |
|-----|----|-------|-------|-------|-------|------|------|------|------|------|
|     | 4  | 0.33  | -0.07 | -0.12 | 0.13  | 0.36 | 0.01 | 1.61 | 0.81 |      |
|     | 5  | 0.32  | -0.17 | -0.02 | 0.13  | 0.36 | 0.01 | 2.00 | 1.00 |      |
|     | 6  | -1.27 | 0.23  | -0.04 | 1.68  | 1.30 | 0.09 | 2.07 | 1.04 |      |
|     | 7  | -1.52 | 0.94  | -0.09 | 3.21  | 1.79 | 0.17 | 2.11 | 1.06 |      |
|     | 8  | 0.97  | -0.18 | 0.01  | 0.98  | 0.99 | 0.05 | 2.17 | 1.09 |      |
|     | 9  | -0.33 | -1.80 | 0.21  | 3.39  | 1.84 | 0.18 | 2.19 | 1.10 |      |
|     | 10 | 0.54  | 0.44  | 0.06  | 0.49  | 0.70 | 0.03 | 2.47 | 1.24 |      |
|     | 11 | -0.21 | -0.08 | 0.08  | 0.06  | 0.24 | 0.00 | 2.53 | 1.27 |      |
|     | 12 | -0.17 | 0.01  | 0.01  | 0.03  | 0.18 | 0.00 | 2.64 | 1.32 |      |
|     | 13 | -2.70 | -1.05 | -0.17 | 8.42  | 2.90 | 0.56 | 2.70 | 1.35 |      |
|     | 14 | 3.13  | 0.97  | 0.10  | 10.73 | 3.28 | 0.72 | 2.75 | 1.37 |      |
|     | 15 | 2.74  | 0.72  | 0.05  | 8.02  | 2.83 | 0.55 | 2.81 | 1.40 |      |
|     | 16 | 3.18  | 1.22  | 0.00  | 11.60 | 3.41 | 0.83 | 2.92 | 1.46 |      |
|     | 17 | -0.42 | -0.32 | -0.03 | 0.28  | 0.53 | 0.02 | 3.08 | 1.54 |      |
|     | 18 | -0.53 | 0.03  | 0.00  | 0.28  | 0.53 | 0.02 | 3.11 | 1.56 |      |
|     | 19 | 2.72  | 0.26  | 0.00  | 7.46  | 2.73 | 0.58 | 3.15 | 1.57 |      |
|     | 20 | 0.51  | 1.14  | 0.23  | 1.61  | 1.27 | 0.12 | 3.16 | 1.58 |      |
| DC5 | 1  | 2.03  | 0.59  | 0.11  | 4.48  | 2.12 | 0.05 | 0.47 | 0.23 | 2.77 |
|     | 2  | 1.83  | -0.54 | -0.05 | 3.66  | 1.91 | 0.06 | 0.72 | 0.36 |      |
|     | 3  | -0.24 | 0.40  | 0.03  | 0.22  | 0.47 | 0.01 | 1.09 | 0.54 |      |
|     | 4  | 1.52  | -1.10 | 0.05  | 3.53  | 1.88 | 0.13 | 1.53 | 0.76 |      |
|     | 5  | 1.15  | 1.74  | -0.14 | 4.37  | 2.09 | 0.18 | 1.68 | 0.84 |      |
|     | 6  | 2.97  | 0.50  | -0.11 | 9.07  | 3.01 | 0.41 | 1.83 | 0.92 |      |
|     | 7  | -0.56 | -0.05 | 0.06  | 0.32  | 0.57 | 0.02 | 1.94 | 0.97 |      |
|     | 8  | -0.63 | -0.15 | 0.01  | 0.42  | 0.65 | 0.02 | 2.01 | 1.01 |      |
|     | 9  | -0.06 | -0.12 | -0.05 | 0.02  | 0.14 | 0.00 | 2.27 | 1.14 |      |
|     | 10 | 0.04  | -0.09 | -0.02 | 0.01  | 0.10 | 0.00 | 2.36 | 1.18 |      |
|     | 11 | 0.88  | -0.26 | 0.00  | 0.85  | 0.92 | 0.05 | 2.47 | 1.23 |      |
|     | 12 | 0.13  | -0.18 | -0.04 | 0.05  | 0.22 | 0.00 | 2.54 | 1.27 |      |
|     | 13 | 3.70  | -0.68 | -0.19 | 14.21 | 3.77 | 0.90 | 2.58 | 1.29 |      |
|     | 14 | 0.51  | -0.07 | 0.01  | 0.26  | 0.51 | 0.02 | 2.68 | 1.34 |      |
|     | 15 | -0.30 | -0.24 | -0.01 | 0.15  | 0.38 | 0.01 | 2.69 | 1.35 |      |
|     | 16 | 4.25  | -1.18 | -0.02 | 19.45 | 4.41 | 1.31 | 2.75 | 1.37 |      |
|     | 17 | -1.56 | 0.53  | 0.13  | 2.73  | 1.65 | 0.19 | 2.81 | 1.40 |      |
|     | 18 | -0.95 | 0.28  | 0.01  | 0.99  | 0.99 | 0.07 | 2.93 | 1.46 |      |
|     | 19 | -0.42 | 0.46  | -0.04 | 0.39  | 0.62 | 0.03 | 2.93 | 1.47 |      |
|     | 20 | -0.63 | -0.35 | -0.01 | 0.52  | 0.72 | 0.04 | 2.96 | 1.48 |      |

DNBDC5

\_