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Error anylasis 

To ensure the reliability of the test results, average values were obtained through test 

at least from three films for every sample and three times for each film. The d33 values 

of these dendrimers were tested under the same environment: room temperature 25±1 

o
C, humidity 40±1%. 

Based on the measured results, we calculated the average deviation (A.D.) and the 

standard deviation (S). The average deviation is calculated by using the following 

equation, where N is the number of tests, Xi is each value, X is the average value: 

A. D.=
∑ |𝑋𝑖 − 𝑋|𝑁
𝑖=1

𝑁
 

The standard deviation (S) is calculated using the following equation, where N is the 

number of tests, Xi is each value, X is the average value: 

S = √
∑ (𝑋𝑖 − 𝑋)2𝑁
𝑖=1

𝑁 − 1
 

Under the 1064 nm fundamental beam, the average deviations (A.D.) are 8.0, 6.9 and 

4.2 pm/V for S1-Ph, J1 and S1-PFPh, with the relatively average deviations of 7.1 %, 

5.8 %, 4.1 % respectively. The standard deviations (S) values are 10.4, 9.2 and 6.3 

pm/V for S1-Ph, J1 and S1-PFPh, with the relatively standard deviations of 9.2 %, 

7.8 %, 6.2 % respectively. From the results, the relatively average deviations and 

relative standard deviations are all below 10 %. 

To improve the comparison of the results, the samples from our other published 

papers were also tested. The results are listed below: 

Sample S1-Ph J1 S1-PFPh G1
1
 C3

2
 D-17N

3
 

d33 (published before) — — — 100.0 195.2 238.0 

d33 (test this time) 112.8 118.0 101.3 110.3 193.5 220.5 

From the results, we can see that the results of these three samples (S1-Ph, J1 and 

S1-PFPh) are reliable, especially in comparison with some typical samples from the 

previous work. 



 

Scheme S1. The structures of conical dendrimers Gn (n = 1-5)
1,4

, global-like 

dendrimers Gn-TPA
5
 and their related parameters: d33 (pm/V); PCs (numbers of 

containing chromophore moiety pieces); N (%, the loading density of the effective 

chromophore moieties). 

 

Scheme S2. The structures of “X” type dendrimers C2
2
, Janus dendrimer D-13N

3
 and 

their related parameters: d33 (pm/V); PCs (numbers of containing chromophore 

moiety pieces); N (%, the loading density of the effective chromophore moieties). 



 

Scheme S3. Chemical structure of conical dendrimer G2. 

 

Scheme S4. Chemical structure of conical dendrimer G2-PFPh. 

 
Scheme S5. Synthesis of the dendron G1-≡. 



 
Scheme S6. Synthesis of the dendron G1-≡-PFPh. 

 

Scheme S7. Synthetic route to 1,6-Diazidohexane. 

 
Scheme S8. Synthetic route to G1-N3. 

 
Scheme S9. Synthetic route to dendrimer J1. 



 
Scheme S10. Synthetic route to dendrimer S1-Ph. 

 

Scheme S11. Synthetic route to dendrimer S1-PFPh. 

 



 

Fig. S1 
1
H NMR spectrum of 1,6-Diazidohexane in chloroform-d. 

 

Fig. S2 
1
H NMR spectrum of G1-N3 in chloroform-d. 



 

Fig. S3 
13

C NMR spectrum of G1-N3 in chloroform-d. 

 Fig. S4 
1
H NMR spectrum of J1 in chloroform-d. 



 

Fig. S5 
13

C NMR spectrum of J1 in chloroform-d. 

 

Fig. S6 
1
H NMR spectrum of S1-Ph in chloroform-d. 



 

Fig. S7 
13

C NMR spectrum of S1-Ph in chloroform-d. 

 

Fig. S8 
1
H NMR spectrum of S1-PFPh in chloroform-d. 



 

Fig. S9 
13

C NMR spectrum of S1-PFPh in chloroform-d. 

 

Fig. S10 
19

F NMR spectra of J1 and S1-PFPh. 



 

Fig. S11 GPC curves of dendrimers. 

 

Fig. S12 TGA thermograms of dendrimers measured in nitrogen at a heating rate of 

20 °C/min. 
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Fig. S13 DSC curves of dendrimers. 

 

Fig. S14 UV-Vis spectra of Dendrimers in 1,4-Dioxane solutions. 
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Fig. S15 UV-Vis spectra of Dendrimers in dichloromethane solutions. 

 

Fig. S16 UV-Vis spectra of Dendrimers in chloroform solutions. 
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Fig. S17 UV-Vis spectra of Dendrimers in DMF solutions. 

 

Fig. S18 UV-Vis spectra of Dendrimers in DMSO solutions. 
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Fig. S19 UV-vis spectra of the film of S1-Ph before and after poling. 

 

Fig. S20 UV-vis spectra of the film of J1 before and after poling. 
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Fig. S21 UV-vis spectra of the film of S1-PFPh before and after poling. 

 

Fig. S22 The optimized structure of S1-Ph viewed from different angles. The 

configurations of all moleculars were calculated by using the molecular mechanics 

(MM) simulations with UFF force field in vacuum. The quantum chemical 

calculations were performed in Gaussian 09 program package. 
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Fig. S23 The optimized structure of J1 viewed from different angles. 

 

Fig. S24 The optimized structure of S1-PFPh viewed from different angles. 
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