Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Electronic Supplementary Information

Real-Time Colorimetric Water Content Monitoring of Organic Solvents by an Azo Dye Incorporated into AlPO₄-5 Nanochannel

Hyeonji Yoo and Hyun Sung Kim*

Department of Chemistry, Pukyong National University, Busan 48513 Korea

Contents

- 1. N₂ isotherm of ground AlPO₄-5
- 2. The water vapor adsorption isotherm of AlPO₄-5
- 3. Characterization of synthesized AZO dye.
- 4. Inclusion of the AZO dye into AlPO₄-5 nanochannel in methanol
- 5. The calculation of concentration for AZO dye encapsulated in AlPO₄-5
- The relationship between relativity polarity and sensitivity of for AZO@AlPO₄ 5 in linear primary alcohol.
- 7. The effect of dye loading on water detection sensitivity
- 8. Evolution performance of recovered AZO@AlPO₄-5

SI.1 N₂ isotherm of ground AlPO₄-5

Fig. S1 N_2 isotherm of ground AlPO₄-5 from BET as indicated.

Fig. S2 The water vapor adsorption isotherm of AlPO₄-5.

SI. 3 Characterization of synthesized AZO dye.

Table SI. Results of 'H NMR, "C N	MR and HR-MS_	
¹ H NMR (CDCl ₃)	¹³ C NMR (CDCl ₃)	MS-ESI-TOF (m/z)
Chemical shift, δ/ppm, J/Hz	Chemical shift, δ /ppm	$C_{16}H_{21}N_4$
δ _H (600 MHz) 9.16 (2 H, d, J 7.1),	$\delta_{\rm C}$ (151 MHz) 162.07, 155.95,	Calculated: 269.1761
8.03 (2 H, d, J 7.0), 7.90 (2 H, d, J	145.58, 144.87, 127.76, 119.26,	Found:269.1758
9.4), 6.74 (2 H, d, J 9.4), 4.82 (2 H,	112.37, 62.06, 40.58, 25.32, 10.68	
s), 3.19 (6 H, s), 2.04 (2 H, m), 1.00		
(3 H, t, <i>J</i> 7.4).		

 Table S1. Results of ¹H NMR. ¹³C NMR and HR-MS

Fig. S3 The spectra of (a) 1 H NMR (b) 13 C NMR and (c) HR-MS as indicated.

SI. 4 Inclusion of the AZO dye into AlPO₄-5 nanochannel in methanol

Fig. S4 (a) Digital photographic images (before, after incorporation of the AZO dye and after centrifugation) and (b) UV-vis spectra of the supernatant solution that depicts the process of the complete incorporation of the AZO dye into $AIPO_4$ -5.

SI. 5 The calculation of concentration for AZO dye encapsulated in AlPO₄-5

Chemical composition of AlPO₄-5's unit cell: Molecular weight of AlPO₄-5's unit cell: (1) The # mole of unit cell in AlPO₄-5 (1.00g) \rightarrow 1.00 / (molecular weight of unit cell) \rightarrow 6.83 × 10⁻⁴ mole (2) We have confirmed that AZO dye in methanol solution (10 mL, 0.23 mM) completely incorporated into AlPO₄-5 (1.00 g) using UV-vis spectroscopy analysis. The total # mole of AZO dye incorporated into AlPO₄-5 (1.00g)

 \rightarrow 2.30 × 10⁻⁶ mole

(3) The number of AZO dye in a AlPO₄-5's unit cell

 \rightarrow [value from (2)] / [value from (1)]

ightarrow 3.37 imes 10⁻³

- (4) The volume of AlPO₄-5's unit cell
- \rightarrow 1420.6 Å³
- \rightarrow 1.4206 × 10⁻²⁷ m³

$$\rightarrow$$
 1.4206 × 10⁻²⁴ L

(5) The concentration of AZO dye encapsulated in AlPO₄-5

 \rightarrow [value from (3) / (# of Avogadro)] / [value from (4)]

 \rightarrow 3.94 × 10⁻³ mole·L⁻¹

 \rightarrow 3.94 mM

Fig. S5 The description for AlPO₄-5 unit cell

SI. 6 The relationship between relativity polarity and sensitivity of for AZO@AlPO₄-5 in primary alcohol.

Fig. S6 The plot for relationship between relativity polarity and sensitivity of AZO@AlPO₄-5 in linear primary alcohol.

SI. 7 The effect of dye loading on water detection sensitivity

Fig. S7 UV-vis absorption (Kubelka-Munk, K/M) spectra of different AZO dye loaded AlPO₄-5 (0.01,0.06 and 0.1 per unit cell) in (a) ethanol sample (0.0 wt% H_2O), (c) ethanol sample (3.1 wt % H_2O) and (b) digital photographic images as indicated.

SI. 8 Evolution performance of recovered AZO@AlPO₄-5

Fig. S8. UV-vis absorption spectra of fresh and recovered AZO@AlPO₄-5 dispersed ethanol sample (4.0 wt % H_2O).