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S1. Phase Composition and Rietveld Refinement.

  The composition and phase purity of the as-synthesized TCPKx-Eu phosphors were identified 

by powder XRD determinations. The diffraction patterns of the samples with different K contents 

are shown in Fig. S1a. All the samples keep the iso-structure with the initial whitlokite TCP. With 

increasing x values from 0 to 1.0, as exhibited in the magnified patterns, in the range of 27.2-34.7 

o (Fig. S1b), regular shift of the diffraction peaks can be detected, which implies the formation of 

a series of continuous solid solution. The peaks ascribed to (2 1 4) and (2 2 0), respectively, lattice 

planes shift gradually shift to the lower diffraction angles. Meanwhile, the change of the location 

of the peak at about 31 o is not that obvious and even a tendency to higher angle is recognized. 

The results indicate a heterogeneous variation of the cell parameters. A further illustration is 

displayed in Table S1. With the growth of K content, a linear increase of parameter a (= b) but a 

linear decrease of parameter c are obtained through Rietveld refinements. The good fitting 

coefficients further validate the phase purity of the as-prepared samples. The atomic parameters of 

the endpoint compounds TCP and TCPK are demonstrated in Table S2 and Table S2, 

respectively.

Figure S1. (a) Representative XRD patterns of TCPKx-Eu (x = 0.0 – 1.0) phosphors and (b) the 
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magnified patterns in the range from 27.2 to 34.7 o. 

Table S1. Crystallographic Parameters from powder Rietveld Refinement for Ca10.5-

0.5xKx(PO4)7:Eu samples.

x = 0 x = 0.25 x = 0.50 x = 0.75 x = 1.00

Space Group R3c R3c R3c R3c R3c

a/Å 10.4375(9) 10.4415(3) 10.4479(2) 10.4531 (4) 10.4579(6)

b/Å 10.4375(9) 10.4415(3) 10.4479(2) 10.4531 (4) 10.4579(6)

c/Å 37.3881(8) 37.3767(4) 37.3558 (7) 37.3406(4) 37.3268 (4)

α/° 90 90 90 90 90

β/° 90 90 90 90 90

γ/° 120 120 120 120 120

cell 

volume/Å3
3527.49(2) 3529.18(2) 3532.29(9) 3533.02(4) 3535.41(7)

χ2 1.336 1.896 1.323 1.743 1.592

Rwp 7.71% 7.53% 6.90% 8.65% 8.18%

Rp 5.96% 5.73% 5.43% 6.62% 6.31%
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Table S2. Atomic parameters of refined β-Ca3(PO4)2 cell.

Atom Ox. Wyck. Site S.O.F. x/a y/b z/c U [Å2]

Ca1 2 18b 1  1 0.72420 0.85570 0.16640 0.0060

Ca2 2 18b 1  1 0.61820 0.82130 -0.03260 0.0040

Ca3 2 18b 1  1 0.72930 0.85210 0.06110 0.0133

Ca4 2 6a 3. 0.43 0 0 -0.08680 0.0172

Ca5 2 6a 3. 1 0 0 0.73440 0.0095

P1 5 6a 3. 1 0 0 0.00060 0.0158

P2 5 18b 1 1 0.68540 0.85910 0.86840 0.0092

P3 5 18b 1 1 0.65130 0.84520 0.76720 0.0058

O1 -2 18b 1 1 0.73740 -0.08650 -0.09030 0.0407

O2 -2 18b 1 1 0.77430 0.78540 0.85800 0.0325

O3 -2 18b 1 1 0.72760 0.00800 0.84740 0.0165

O4 -2 18b 1 1 0.52420 0.76330 0.86080 0.0127

O5 -2 18b 1 1 0.60300 -0.04320 0.77980 0.0000

O6 -2 18b 1 1 0.57230 0.68970 0.78360 0.0037

O7 -2 18b 1 1 0.07060 0.89570 0.77490 0.0071

O8 -2 18b 1 1 0.63210 0.82620 0.72630 0.0186

O9 -2 18b 1 1 0.00930 0.86390 -0.01320 0.0434

O10 -2 6a 3. 1 0 0 0.0402(3) 0.0092
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Table S3. Atomic parameters of refined Ca10K(PO4)7 cell.

Atom Ox. Wyck. Site S.O.F. x/a y/b z/c U [Å2]

Ca1 2 18b 1 1 0.39840 0.18660 0.02770 0.0146

Ca2 2 18b 1 1 0.39260 0.18830 0.13320 0.0074

Ca3 2 18b 1 1 0.18060 0.38390 0.10170 0.0095

Ca5 2 6a 3. 1 1/3 2/3 0.03500 0.0084

K 1 6a 3. 1 0 0 0.04810 0.0514

P1 5 6a 3. 1 0 0 0.13570 0.0149

P2 5 18b 1 1 0.13450 0.31290 0.00230 0.0081

P3 5 18b 1 1 0.48710 0.47560 0.06750 0.0079

O1 -2 6a 3. 1 0 0 0.17340 0.0213

O2 -2 18b 1 1 0.01470 0.15160 0.12120 0.0163

O3 -2 18b 1 1 0.08550 0.27170 0.04510 0.0210

O4 -2 18b 1 1 0.23110 0.24560 -0.00880 0.0130

O5 -2 18b 1 1 -0.00940 0.28080 -0.02020 0.0096

O6 -2 18b 1 1 0.23700 0.48360 -0.00680 0.0144

O7 -2 18b 1 1 0.41130 0.56500 0.07410 0.0024

O8 -2 18b 1 1 0.50900 0.47570 0.02610 0.0104

O9 -2 18b 1 1 0.64190 0.54210 0.08170 0.0187

O10 -2 18b 1 1 0.37760 0.31310 0.07950 0.0166
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Figure S2. XPS measurements of TCPKx-Eu samples with different K content (a-c), Eu3d core 

levels deconvoluted to discriminate the two valent states (d), and K2p core levels (e): the black, 

green and red curves correspond to the samples with x = 0, 0.5 and 1.0, respectively.

Considering the charge balance mechanism, two Eu3+ ions can substitute for three Ca2+ ions, 

resulting in a vacancy defect with two negative charges VCa
’’ and two positive defects EuCa

●. Then, 

the vacancy defect acts as the donor of electrons and the two EuCa
● become the acceptors. The 

electrons may be transferred from VCa
’’ to EuCa

● sites by phonon-assisted processes, resulting in 

the reduction of Eu3+ to Eu2+ ions. The whole process (S1-S3) is presented as follows: 

2Eu3+ + 3CaCa
× → 2EuCa

● + VCa
’’ + 3Ca2+      (S1)

VCa
’’ → VCa

× + 2e’                         (S2)

2EuCa
● + 2e’ → 2EuCa

×                     (S3)

VCa
× + 2e → VCa

’’ (S4)

In Ca3(PO4)2:Eu system, there is a lot of vacancy defect on the M4 sites, resulting in difficult 

reduction of Eu3+ to Eu2+ ions according to the reaction (S4), because the VCa
× may competitively 

capture the freedom electrons which can be used to reduce the Eu3+ ions. 
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After K+ doping, the K+ will occupy the vacancy site, causing the amount of vacancy defect 

extreme decreasing (5). As a result, under reduction condition, the Eu3+ could be easily reduced to 

Eu2+ ions. The changes of the Eu2+/Eu3+ ratio at a fixed europium doping concentration are show 

in the XANES (Fig. 2c) and XPS spectra (Fig. 3b).

Figure S3. Photoluminescent spectra of TCP:yEu2+ under excitation of 330 nm.

Figure S4. Normalized excitation spectra of TCPKx-Eu phosphors monitored at 420 nm (a) and 

470 nm (b).
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Figure S5. PL spectra of TCPKx-Eu phosphors at various temperatures: (a) x = 0, (b) x = 0.5, (c) 

fitted emission spectra of x = 0.5 samples and (d) x = 1.0. 

Figure S6. Photoluminescent spectra of TCPKx:0.05%Eu2+ under excitation of 330 nm.
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Table S4. The comparison of calculated cell parameters of TCP and TCPK by DFT.

a / Å b / Å c / Å Volume / Å3

TCP 10.547 10.547 37.708 3632.78

TCPK 10.608 10.608 37.561 3660.34

Changes +0.575% +0.575% -0.391% +0.759%

Table S5. The comparison of average M-O bond length in TCP and TCPK.

Ca(1)-O7 / Å Ca(2)-O8 / Å Ca(3)-O8 / Å M(4)-O9 / Å Ca(5)-O6 / Å

TCP 2.4566 2.5070 2.5474 2.8431 2.2779

TCPK 2.4527 2.5229 2.5565 3.0333 2.3035

 

Figure S7. Band structures of TCP-Eu (a) and TCPK-Eu (b) with Eu2+ at Ca(4) and Ca(3) site, 

respectively.
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Figure S8. PDOS of TCP (a) and TCPK (b).

Figure S9. Representative XRD patterns of TCPNay-Eu (a) and TCPLiz-Eu (b) phosphors


