Supporting Information

1 Synthesis and Characterization of Compounds

Materials. Sulfobenzide, 4-bromobenzene-1-sulfonyl chloride, anisole, benzenesulfonyl chloride, and dibenzo[b,d]thiophen-4-ylboronic acid were purchased from Aldrich. And sulfobenzide was further purified to use in experiment. Potassium *tert*-butoxide was purchased from Alfa Aesar. The other reagents were purchased from Aladdin Industrial.

Characterization. ¹H NMR spectra were obtained from a Varian Mercury-Plus 500 Nuclear Magnetic Resonance Spectrometer in CDCl₃, using tetramethylsilane (TMS) as the internal standard. High-resolution EI mass spectra were performed with on a MAT95XP-HRM spectrometer. Using Hitachi U-3900 spectrophotometer to measure the UV-visible absorption spectra of the final compounds. The steady-state emission and persistent phosphorescence emission were carried out with a Shimadzu RF-5301 PC spectrometer or an Ocean Optics Maya Pro2000 with 310 nm and 365 nm Rhinospectrum RhinoLED as the excitation source. Wide-angle X-ray diffraction (XRD) measurements were performed at 293 K using an X-ray diffractometer (Smartlab, Rigaku Co.) with an X-ray source of Cu K α (λ = 0.15406 nm) at 40 kV and 30 mA at a scan rate of 4° (2 θ)/min. The temperature-dependent emission studies were measured on Horiba JY FL-3 spectrometer equipped with a calibrated integrating sphere. Single-crystal analyses of SPh, OMe-SPh and OMe-SPhT were attained through an Oxford Diffraction Gemini S Ultra X-ray Single Crystal Diffractometer with a (Cu) X-ray source. The TD-DFT calculations were performed at the rb3lyp/6-31g(d) level in the Gaussian 09 software.

Synthetic Routes:

Scheme S1 Synthetic routes for OMe-SPh and OMe-SPhT compounds.

Synthetic Details:

Sulfobenzide (SPh) was purchased from Aldrich immediately and further recrystallized using the solvent of dichloromethane and n-hexane. The intermediate compounds (SOBr-OMe) and the final compounds of OMe-SPh and OMe-SPhT were synthesized according to our previous work,^[1] except that the dibenzo[b,d]furan-4-ylboronic acid was replaced by dibenzo[b,d] thiophene -4-ylboronic acid.

Sulfobenzide (SPh) ¹H NMR (500 MHz, CDCl₃, 298K): δ = 7.98-7.93 (m, 4H), 7.59-7.54 (m, 2H), 7.52-7.49 (m, 4H); ¹³C NMR (DMSO): δ 141.57, 134.19, 130.23, 127.80. High Resolution EI-MS: m/z found: 218.0397 [M]⁺; calcd for C₁₂H₁₀O₂S: 218.0402.

1-methoxy-4-(phenylsulfonyl)benzene (OMe-SPh) A white solid was achieved. Yield: 1.78 g (63.3 %). ¹H NMR (500 MHz, CDCl₃, 298K): δ = 7.92 (d, 8.0Hz, 2H), 7.88 (d, 8.5 Hz, 2H), 7.57-7.45 (m, 3H), 7.00-6.93 (m, 2H), 3.84 (s, 3H); ¹³C NMR (DMSO): δ 163.59, 142.41, 133.78, 133.01, 133.01, 130.15, 127.42, 115.42. High Resolution EI-MS: m/z found: 248.0501 [M]⁺; calcd for C₁₃H₁₂O₃S: 248.0507.

4-(4-((4-methoxyphenyl)sulfonyl)phenyl)dibenzo[b,d]thiophene (OMe-SPhT)

A white solid was achieved. Yield: 1.31 g (85.5 %). ¹H NMR (500 MHz, CDCl₃, 298K): $\delta = 8.23-8.17$ (m, 2H), 8.05 (d, 8.5 Hz, 2H), 7.96 (d, 9Hz, 2H), 7.98-7.80 (m, 3H), 7.60-7.54 (m, 1H), 7.52-7.42 (m, 3H), 7.05-6.99 (m, 2H), 3.89-3.85 (s, 3H); ¹³C NMR (DMSO): δ 163.77, 144.88, 141.97, 138.63, 137.67, 136.49, 135.51, 134.87, 133.82, 130.32, 129.69, 128.22, 127.93, 127.85, 126.23, 125.49, 123.35, 122.82, 122.59, 115.57, 56.31. High Resolution EI-MS: m/z found: 430.0694 [M]⁺; calcd for C₂₅H₁₈O₃S₂: 430.0697.

Figure S1. The ¹H NMR spectrum of of SPh.

Figure S2. The ¹³C NMR spectrum of of SPh.

Figure S3. The ¹H NMR spectrum of of OMe-SPh.

Figure S4. The ¹³C NMR spectrum of of OMe-SPh.

Figure S5. The ¹H NMR spectrum of of OMe-SPhT

Figure S6. The ¹³C NMR spectrum of of OMe-SPhT

Figure S7. High-resolution EI mass spectrum of SPh

Figure S8. High-resolution EI mass spectrum of OMe-SPh

Figure S9. High-resolution EI mass spectrum of OMe-SPhT

2 Single crystal data of SPh, OMe-SPh and OMe-SPhT

Single-crystal X-ray data of SPh, OMe-SPh and OMe-SPhT were collected by an Oxford Diffraction Gemini S Ultra X-ray Single Crystal Diffractometer with a (Cu) X-ray source. The single-crystal structures were solved by Olex2 v1.2 program and expanded using Fourier techniques. All non-H atoms of the compounds were refined with anisotropic thermal parameters. The hydrogen atoms were added in idealized positions and refined with fixed geometry according to their carrier atoms. CCDC numbers for the single-crystal structures of SPh, OMe-SPh and OMe-SPhT are 1905615, 1834499 and 1835838 respectively.

Crystal Data for SPh: $C_{12}H_{10}O_2S$ (M =218.26 g/mol), monoclinic, space group P2₁/c, a = 12.0982(2) Å, b = 7.66810(10) Å, c = 11.24180(10) Å, α =90° β = 96.7340(10)°, γ =90°, V = 1035.71(2) Å³, Z = 4, T = 150.00(10) K, μ (CuK α) = 2.573 mm⁻¹, ρ_c = 1.400 g/cm³, Reflections collected 15305, Independent reflections 2084 unique (R_{int} = 0.0449, R_{sigma} = 0.0225). R₁ = 0.0309 (I > 2 σ (I)) and wR₂ = 0.0833 (all data). GOF = 1.083.

Crystal Data for OMe-SPh: $C_{13}H_{12}O_3S$ (M =248.29 g/mol), monoclinic, space group $P2_1/n$, a = 13.9202(7) Å, b = 8.0462(4) Å, c = 11.3730(5) Å, α =90°, β = 105.687(5)°, γ =90°, V = 1226.38(4) Å³, Z = 4, T = 290.00(10) K, μ (CuK α) = 2.302 mm⁻¹, ρ_c = 1.345 g/cm³, Reflections collected 3483, Independent reflections 2335 unique (R_{int} = 0.0233, R_{sigma} = 0.0269). R₁= 0.0478 (I>=2\sigma (I)) and wR₂ = 0.1597 (all data). GOF = 1.156.

Crystal Data for OMe-SPhT: $C_{25}H_{18}O_3S_2$ (M =430.55 g/mol), monoclinic, space group P2₁/n, a = 7.1560(18) Å, b = 7.9129(18) Å, c = 35.708(10) Å, α =90°, β = 91.70(2)°, γ =90°, V = 2021.1(9) Å³, Z = 4, T = 290.00(10) K, μ (CuK α) = 2.595 mm⁻¹, ρ_c = 1.4149 g/cm³, Reflections collected 4832, Independent reflections 2967 unique (R_{int} = 0.0238, R_{sigma} = 0.0336). R₁= 0.0478 (I>=2u (I)) and wR₂ = 0.0903 (all data). GOF = 1.054.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	C1	1.7706(14)	C5	C6	1.384(2)
S 1	C2	1.7660(13)	C5	C12	1.388(2)
S1	03	1.4411(11)	C6	C10	1.388(2)
S1	O4	1.4406(11)	C7	C8	1.385(2)
C1	C11	1.3898(19)	C7	C13	1.385(2)
C1	C12	1.3879(19)	C9	C14	1.388(2)
C2	C8	1.3917(18)	C10	C11	1.384(2)
C2	C9	1.3910(19)	C13	C14	1.386(2)

Table S1. Bond distances (Å) for SPh

Table S2. Bond angles for SPh

		-					
Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C2	S1	C1	104.32(6)	C9	C2	C8	119.8(2)
03	S 1	C1	108.27(6)	C6	C5	C12	119.8(3)
03	S 1	C2	108.30(6)	C5	C6	C10	120.3(3)
O4	S 1	C1	107.61(6)	C8	C7	C13	119.5(3)
O4	S 1	C2	108.23(6)	C7	C8	C2	120.8(3)
O4	S1	03	119.13(7)	C14	С9	C2	119.5(3)
C11	C1	S1	119.24(10)	C11	C10	C6	120.7(3)
C12	C1	S1	119.11(10)	C10	C11	C1	118.5(3)
C12	C1	C11	121.65(13)	C5	C12	C1	119.2(3)
C8	C2	S1	119.40(10)	C7	C13	C14	120.1(3)
C9	C2	S 1	118.94(10)	C13	C14	C9	121.0(3)

Table S3. Bond distances (Å) for OMe-SPh

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S001	O003	1.434(3)	C006	C00B	1.392(5)
S001	O004	1.439(3)	C007	C009	1.376(4)
S001	C005	1.769(3)	C007	C00A	1.396(4)
S001	C007	1.753(3)	C008	C009	1.378(4)
O002	C006	1.349(4)	C00A	C00B	1.369(4)

O002	C00H	1.430(4)	C00C	C00F	1.378(5)
C005	COOC	1.378(4)	C00D	C00G	1.381(5)
C005	C00D	1.372(4)	C00E	C00F	1.362(5)
C006	C008	1.388(4)	C00E	C00G	1.369(5)

Table S4. Bond angles for OMe-SPh

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O003	S001	O004	119.36(17)	C009	C007	S001	119.8(2)
O003	S001	C005	107.72(16)	C009	C007	C00A	119.8(3)
O003	S001	C007	108.26(15)	C00A	C007	S001	120.3(3)
O004	S001	C005	107.62(15)	C009	C008	C006	119.5(3)
O004	S001	C007	107.87(16)	C007	C009	C008	120.8(3)
C007	S001	C005	105.12(13)	C00B	C00A	C007	119.5(3)
C006	O002	C00H	117.6(3)	C00A	C00B	C006	120.7(3)
C00C	C005	S001	119.6(2)	C005	C00C	C00F	118.5(3)
C00D	C005	S001	119.2(2)	C005	C00D	C00G	119.2(3)
C00D	C005	C00C	121.2(3)	C00F	C00E	C00G	120.1(3)
O002	C006	C008	124.5(3)	C00E	C00F	C00C	121.0(3)
O002	C006	C00B	115.9(3)	C00E	C00G	C00D	120.1(3)
C008	C006	C00B	119.6(3)				

Table S5. Bond distances (Å) for OMe-SPhT

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S7aa	O2aa	1.4405(16)	C4aa	C6ba	1.385(3)
S7aa	C3aa	1.7690(18)	C5aa	C9ba	1.376(3)
S7aa	C5ba	1.758(2)	C1	C3ba	1.390(3)
S7aa	O4ca	1.4394(15)	C1	C8ba	1.389(3)
S1aa	C0aa	1.7588(18)	C8aa	C0ba	1.388(3)
Slaa	C0ba	1.7437(18)	C8aa	Clca	1.374(3)
0	C6ba	1.356(2)	C9aa	C3ba	1.482(2)
0	C2	1.423(3)	C9aa	C9ba	1.399(2)
C0aa	Claa	1.404(2)	C0ba	C2ba	1.400(3)
C0aa	C3ba	1.397(2)	Clba	C8ba	1.371(3)
C1aa	C1ba	1.392(3)	C2ba	C2ca	1.398(3)

C1aa	C2ba	1.446(3)	C4ba	C5ba	1.388(3)
C2aa	C6aa	1.380(2)	C5ba	C3ca	1.376(3)
C2aa	C9aa	1.394(3)	C6ba	C7ba	1.384(3)
C3aa	C5aa	1.383(3)	C7ba	C3ca	1.377(3)
C3aa	C6aa	1.388(3)	C0ca	Clca	1.394(3)
C4aa	C4ba	1.367(3)	C0ca	C2ca	1.370(3)

Table S6. Bond angles for OMe-SPhT

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C3aa	S7aa	O2aa	106.46(9)	C9ba	C9aa	C3ba	120.08(15)
C5ba	S7aa	O2aa	107.05(9)	C8aa	C0ba	Slaa	125.47(16)
C5ba	S7aa	C3aa	109.03(8)	C2ba	C0ba	S1aa	112.37(13)
O4ca	S7aa	O2aa	119.38(10)	C2ba	C0ba	C8aa	122.16(17)
O4ca	S7aa	C3aa	107.75(8)	C8ba	C1ba	Claa	120.00(17)
O4ca	S7aa	C5ba	106.88(9)	C0ba	C2ba	Claa	112.50(15)
C0ba	Slaa	C0aa	91.21(9)	C2ca	C2ba	Claa	129.08(18)
C2	0	C6ba	119.21(18)	C2ca	C2ba	C0ba	118.41(18)
Claa	C0aa	S1aa	112.13(13)	C1	C3ba	C0aa	116.97(16)
C3ba	C0aa	S1aa	125.86(13)	C9aa	C3ba	C0aa	121.36(15)
C3ba	C0aa	Claa	121.95(16)	C9aa	C3ba	C1	121.66(16)
Clba	Claa	C0aa	118.85(16)	C5ba	C4ba	C4aa	118.91(18)
C2ba	C1aa	C0aa	111.74(16)	C4ba	C5ba	S7aa	118.87(15)
C2ba	C1aa	C1ba	129.40(16)	C3ca	C5ba	S7aa	120.58(14)
C9aa	C2aa	C6aa	121.75(15)	C3ca	C5ba	C4ba	120.32(18)
C5aa	C3aa	S7aa	119.79(13)	C4aa	C6ba	0	115.23(16)
C6aa	C3aa	S7aa	119.26(14)	C7ba	C6ba	0	124.45(19)
C6aa	C3aa	C5aa	120.63(16)	C7ba	C6ba	C4aa	120.31(18)
C6ba	C4aa	C4ba	120.82(17)	C3ca	C7ba	C6ba	118.68(19)
C9ba	C5aa	C3aa	120.08(16)	C1ba	C8ba	C1	120.47(17)
C8ba	C1	C3ba	121.75(17)	C9aa	C9ba	C5aa	120.56(17)
C3aa	C6aa	C2aa	118.74(16)	C2ca	C0ca	Clca	121.05(19)

Clca	C8aa	C0ba	118.0(2)	C0ca	Clca	C8aa	120.8(2)
C3ba	C9aa	C2aa	121.82(15)	C0ca	C2ca	C2ba	119.5(2)
C9ba	C9aa	C2aa	118.09(16)	C7ba	C3ca	C5ba	120.92(17)

3 Supplementary Figures

Figure S10. UV-vis absorption and emission spectra of SPh, OMe-SPh, OMe-SPhT and dibenzonthiophene in THF solution with a concentration of 1.0×10^{-5} mol/L.

Figure S11. UV-vis absorption and emission spectra of OMe-SPhT in different solvents.

Figure S12. Energy level distributions of the isolated molecules simulated in vacuum.

Figure S13. Emission spectra of SPh, OMe-SPh and OMe-SPhT in glass state at 77 K (2Me-THF, 1×10^{-5} mol/L) and in solid state at 300 K.

Figure S14. PXRD of crystalline powder (SPh, OMe-SPh and OMe-SPhT).

Figure S15. Lifetime decay profiles of SPh at 529 nm and OMe-SPh at 478 nm under

ambient conditions.

Figure S16. Lifetime decay profiles of OMe-SPh at 580 nm and 625 nm under ambient conditions.

Figure S17. Lifetime decay profiles of OMe-SPhT at 530 nm, 563 nm and 603 nm under ambient conditions.

Figure S18. Phosphorescence spectra of SPh, OMe-SPh and OMe-SPhT at 300 K and 77 K.

Figure S19. The intermolecular interactions in the crystal of OMe-SPh and OMe-SPhT.

Figure S20. The ISC channels between the lowest singlet (S_1) and triplet states (T_n) of OMe-SPh and OMe-SPhT. (The red solid and dashed arrows represent major and minor ISC channels, respectively)

Figure S21. Lifetime decay profiles of OMe-SPhT at 535 nm, 563 nm and 603 nm measured at different temperatures.

Reference

1 J. Chen, T. Yu, E. Ubba, Z. Xie, Z. Yang, Y. Zhang, S. Liu, J. Xu, M. P. Aldred, Z. Chi, Adv. Opt. Mater., 2019, 7, 1801593.