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1. MoS,/Gr heterostructure

Figure S1. The stereo matching strategy of monolayer MoS; and graphene. Top views of (a) monolayer
MoS; with 4x4x1 lateral periodicity and (b) graphene with 5x5x1 lateral periodicity; (c) Side view of

MoS,/Gr heterostructure.

2. Definition of vacancy formation energy
The vacancy formation energy required to remove a sulfur atom from the surface of monolayer MoS; is
represented as:

E, =E}(Mo,S,,,) + 4 —E{(Mo,S,,) 1)
where E(Mo,S,,,) and E(Mo,S,,) are the total energies of the defective and stoichiometric slabs,
respectively. The vacancy formation energy depends on growth conditions, which may be varied from
S-rich to S-poor condition. For S-rich condition, cycle Sg¢ molecular is used to determine the chemical

potential s« = 1(S;)/6. However, for S-poor condition, the chemical potential of S element can be
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expressed by s = E(MoS,)— 4, , Where g, = E(MO, . .;)/n and n is the number of Mo atom in

bulk metal Mo. The formation energy of single S-vacancy is -2.928 eV for S-poor condition.

Figure S2. Top view of S-vacancy (red dashed line) pattern. The 4x4x1 supercell of monolayer MoS; is

used to avoid the periodic interactions between the neighboring defects.

3. Energy band structures

The state-of-the-art hybrid DFT approach based on the Heyd-Scuseria-Ernzerhof functional (HSE06)
was used to calculate the electronic structures of MoS; after geometric optimization. In the default
hybrid functional HSEO6, the screening parameter p and the mixing parameter o are set as 0.21 A1 and
0.25, respectively. And norm-conserving pseudopotentials were used for all-electron HSEO6 calculations.
The calculated band gap of monolayer MoS; is 2.23 eV at the high symmetry K point, which is slightly

larger than the experimental band gap of about 1.80 eV.
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Figure S3. Energy band structures of monolayer MoS; using hybrid functional HSEQ6.
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4. TDOS and PDOS of MoSz1-xSexx/Gr heterostructure
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Figure S4. Calculated TDOS of MoS;1-xSex/Gr heterostructure with different Se doping concentration
(@) inside and (b) outside the interface. The calculated PDOS of (c) C, (e) S, (g) Se atoms in
MoSz1-xSex/Gr  heterostructure with different Se dopant concentration inside the interface. The

calculated PDOS of (d) C, (f) S, (h) Se atoms in MoS;u-xSex/Gr heterostructure with different Se

dopant concentration outside the interface. The vertical line is Fermi level.
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5. Interface distance

Table S1. Interface distance at different Se concentrations of MoSx-xSe2x/Gr heterostructure.

MoS,/Gr M0S1.75S€0.25/Gr-in Mo0S1.50S€0.50/Gr-in Mo0S1.25S€0.75/Gr-in Mo0S1.00S€1.00/Gr-in
D=3387A D=3.363A | D=3.384 A D=3.356A D=3.325 A
ASTA
D=3.406 A /2384 A
Mo0S1.25Se0.75/Gr-out Mo0S1.00Se1.00/Gr-out
/239 A D=3.390 AD=3.386 A D=3.383 A

Figure S5. The MoS;25Seo75/Gr heterostructure with different Se distributions inside or outside
interface. Side views of (a) Se inside (x=0.125) and outside (x=0.625) interface, (b) Se inside (x=0.625)

and outside (x=0.125) interface. The aquamarinus, yellow, grey, and red balls denote Mo, S, C, and Se

atoms, respectively.
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Figure S6. Energy band structures of MoS1.25Seo.7s/Gr heterostructures with different Se distributions
inside or outside interface. (a) Se inside (x=0.125) interface and outside (x=0.625) interface, (b) Se
inside (x=0.625) interface and outside (x=0.125) interface, (c) Se outside (x=0.75) interface, (d) Se
inside (x=0.75) interface for Mo0S125Seo.7s/Gr heterostructure, in which green areas and red areas

represent n-SBH and p-SBH, respectively. The Fermi level is set to zero and marked by red dotted lines.

7. Electrostatic potentials
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Figure S7. Calculated electrostatic potentials for (a) graphene, (b) monolayer MoS;, (c) MoS,/Gr

heterostructure.
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Figure S8. Calculated electrostatic potentials for (a) M0S1.75S€0.25/Gr-in, (b) M0S1.50S€0.50/Gr-in, ()
Mo0S1.25S€0.50/Gr-in, (d) MoS1.00Se1.00/Gr-in; and (e) MoS1.75Seo.25/Gr-out, (f) MoS1.50Seos0/Gr-out, (g)
MoS1 25Se0.50/Gr-out, (h) MoS1.00Se1.00/Gr-out. The blue and red dashed lines denote the vacuum energy

level and Fermi level, respectively.

8. Three-dimensional (3D) charge density difference
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Figure S9. Side and top views of the charge density difference (0.001 e-A3) for (a) M0S1.75S€0.25/Gr-in,
(b) MOS1_5oseo,5o/Gr-in, (C) MOSl_zsseo,so/Gl’-in, (d) MOSl,oosel,oo/Gl’-in, (e) M031,75390,25/GI'-0UL (f)

MoS1 50Se0.50/Gr-out, (g) M0Si.255€0.50/Gr-out and (h) MoS1.00Se1.00/Gr-out.
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