Supplementary Information (SI)

A Promising Strategy to Tune the Schottky Barrier of MoS_{2(1-x)}Se_{2x}/graphene

Heterostructure by Asymmetric Se Doping

Jisong Hu,^a Wangyang Duan,^a Hua He,^a Hui Lv,^{ab} Chuyun Huang^{ab} and Xinguo Ma*ab

^a School of Science, Hubei University of Technology, Wuhan 430068, China;

^b Hubei Collaborative Innovation Center for High-efficiency Utilization of Solar Energy, Hubei

University of Technology, Wuhan 430068, China;

*Corresponding Authors, E-mail: maxg2013@sohu.com

1. MoS₂/Gr heterostructure

Figure S1. The stereo matching strategy of monolayer MoS_2 and graphene. Top views of (a) monolayer MoS_2 with $4 \times 4 \times 1$ lateral periodicity and (b) graphene with $5 \times 5 \times 1$ lateral periodicity; (c) Side view of MoS_2/Gr heterostructure.

2. Definition of vacancy formation energy

The vacancy formation energy required to remove a sulfur atom from the surface of monolayer MoS_2 is represented as:

$$E_{\rm V} = E_{\rm T}^{\rm q}({\rm Mo}_{\rm n}S_{2{\rm n}\cdot{\rm l}}) + \mu_{\rm S} - E_{\rm T}^{\rm q}({\rm Mo}_{\rm n}S_{2{\rm n}})$$
(1)

where $E(Mo_n S_{2n-1})$ and $E(Mo_n S_{2n})$ are the total energies of the defective and stoichiometric slabs, respectively. The vacancy formation energy depends on growth conditions, which may be varied from S-rich to S-poor condition. For S-rich condition, cycle S₆ molecular is used to determine the chemical potential $\mu_s = \mu(S_6)/6$. However, for S-poor condition, the chemical potential of S element can be expressed by $\mu_{\rm S} = E({\rm MoS}_2) - \mu_{\rm Mo}$, where $\mu_{\rm Mo} = E({\rm Mo}_{\rm bulk \ cell}) / n$ and n is the number of Mo atom in bulk metal Mo. The formation energy of single S-vacancy is -2.928 eV for S-poor condition.

Figure S2. Top view of S-vacancy (red dashed line) pattern. The $4 \times 4 \times 1$ supercell of monolayer MoS₂ is used to avoid the periodic interactions between the neighboring defects.

3. Energy band structures

The state-of-the-art hybrid DFT approach based on the Heyd-Scuseria-Ernzerhof functional (HSE06) was used to calculate the electronic structures of MoS_2 after geometric optimization. In the default hybrid functional HSE06, the screening parameter μ and the mixing parameter α are set as 0.21 Å⁻¹ and 0.25, respectively. And norm-conserving pseudopotentials were used for all-electron HSE06 calculations. The calculated band gap of monolayer MoS_2 is 2.23 eV at the high symmetry K point, which is slightly larger than the experimental band gap of about 1.80 eV.

Figure S3. Energy band structures of monolayer MoS₂ using hybrid functional HSE06.

References

- J. Heyd, G. E. Scuseria, M. Ernzerhof, Hybrid Functionals Based on a Screened Coulomb Potential. J. Chem. Phys. 2003, 118, 8207–8215.
- (2) J. S. Lin, A. Qteish, M. C. Payne, V. Heine, Optimized and Transferable Nonlocal Separable Ab Initio Pseudopotentials. *Phys. Rev. B* 1993, 47, 4174–4180.
- (3) K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically Thin MoS₂: A New Direct-Gap Semiconductor. *Phys. Rev. Lett.* 2010, **105**, 2–5.

4. TDOS and PDOS of MoS_{2(1-x)}Se_{2x}/Gr heterostructure

Figure S4. Calculated TDOS of $MoS_{2(1-x)}Se_{2x}/Gr$ heterostructure with different Se doping concentration (a) inside and (b) outside the interface. The calculated PDOS of (c) C, (e) S, (g) Se atoms in $MoS_{2(1-x)}Se_{2x}/Gr$ heterostructure with different Se dopant concentration inside the interface. The calculated PDOS of (d) C, (f) S, (h) Se atoms in $MoS_{2(1-x)}Se_{2x}/Gr$ heterostructure with different Se dopant concentration with different Se dopant concentration outside the interface. The vertical line is Fermi level.

5. Interface distance

MoS ₂ /Gr	MoS _{1.75} Se _{0.25} /Gr-in	MoS _{1.50} Se _{0.50} /Gr-in	MoS _{1.25} Se _{0.75} /Gr-in	MoS _{1.00} Se _{1.00} /Gr-in
D=3.406 Å 2.388 Å 2.390 Å	D=3.387 Å D=3.363 Å 2.384 Å 2.45 Å 2.392Å 2.385 Å	D=3.384 Å D=3.356 Å 2.383 Å 2.477 Å 2.387Å 2.386 Å	D=3.381 Å D=3.345 Å 2.378 Å 2.46 Å 2.388Å 2.385 Å	D=3.325 Å
	MoS _{1.75} Se _{0.25} /Gr-out	MoS _{1.50} Se _{0.50} /Gr-out	MoS _{1.25} Se _{0.75} /Gr-out	MoS1.00Se1.00/Gr-out
	D=3.396 Å D=3.392 Å ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	↑ ↑ D=3.392 ÅD=3.387 Å ↓ 2.389 Å 2.381Å 2.415 Å	D=3.390 ÅD=3.386 Å ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	D=3.383 Å

Table S1. Interface distance at different Se concentrations of $MoS_{2(1-x)}Se_{2x}/Gr$ heterostructure.

6. Se dopant atoms on both side of Mo

Figure S5. The $MoS_{1.25}Se_{0.75}/Gr$ heterostructure with different Se distributions inside or outside interface. Side views of (a) Se inside (x=0.125) and outside (x=0.625) interface, (b) Se inside (x=0.625) and outside (x=0.125) interface. The aquamarinus, yellow, grey, and red balls denote Mo, S, C, and Se atoms, respectively.

Figure S6. Energy band structures of $MoS_{1.25}Se_{0.75}/Gr$ heterostructures with different Se distributions inside or outside interface. (a) Se inside (x=0.125) interface and outside (x=0.625) interface, (b) Se inside (x=0.625) interface and outside (x=0.125) interface, (c) Se outside (x=0.75) interface, (d) Se inside (x=0.75) interface for $MoS_{1.25}Se_{0.75}/Gr$ heterostructure, in which green areas and red areas represent n-SBH and p-SBH, respectively. The Fermi level is set to zero and marked by red dotted lines.

7. Electrostatic potentials

Figure S7. Calculated electrostatic potentials for (a) graphene, (b) monolayer MoS_2 , (c) MoS_2/Gr heterostructure.

Figure S8. Calculated electrostatic potentials for (a) $MoS_{1.75}Se_{0.25}/Gr-in$, (b) $MoS_{1.50}Se_{0.50}/Gr-in$, (c) $MoS_{1.25}Se_{0.50}/Gr-in$, (d) $MoS_{1.00}Se_{1.00}/Gr-in$; and (e) $MoS_{1.75}Se_{0.25}/Gr-out$, (f) $MoS_{1.50}Se_{0.50}/Gr-out$, (g) $MoS_{1.25}Se_{0.50}/Gr-out$, (h) $MoS_{1.00}Se_{1.00}/Gr-out$. The blue and red dashed lines denote the vacuum energy level and Fermi level, respectively.

8. Three-dimensional (3D) charge density difference

Figure S9. Side and top views of the charge density difference $(0.001 \text{ e} \cdot \text{Å}^{-3})$ for (a) MoS_{1.75}Se_{0.25}/Gr-in, (b) MoS_{1.50}Se_{0.50}/Gr-in, (c) MoS_{1.25}Se_{0.50}/Gr-in, (d) MoS_{1.00}Se_{1.00}/Gr-in, (e) MoS_{1.75}Se_{0.25}/Gr-out, (f) MoS_{1.50}Se_{0.50}/Gr-out, (g) MoS_{1.25}Se_{0.50}/Gr-out and (h) MoS_{1.00}Se_{1.00}/Gr-out.