Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Highly Stable Kirigami-Structured Stretchable Strain Sensors for Perdurable Wearable Electronics

Kaichen Xu,^{‡a} Yuyao Lu,^{‡a} Satoko Honda,^a Takayuki Arie,^a Seiji Akita^a and Kuniharu Takei*^{a,b}

^aDepartment of Physics and Electronics, Osaka Prefecture University, Sakai, Osaka 599-8531, Japan
^bJST PRESTO, Kawaguchi, Saitama, 332-0012, Japan
[‡]These aurthors contributed equally to this work.
*Corresponding author: <u>takei@pe.osakafu-u.ac.jp</u>

Figure S1. Ag electrode resistance on a kirigami structure of polyimide film as a function

of stretching strain.

Figure S2. Normalized resistance change ratio of the graphene strain sensor without ecoflex passivation under different applied strains.

Figure S3. Photos of structural deformation of ecoflex grid-wrapped and filmencapsulated devices with different thicknesses (25 μ m and 130 μ m) of the polyimide under stretching condition.

Structures	Sensing behavior	Stretching- releasing stability tests	Performance degradation? Y/N	Stretchability	References
Graphene based gauge structure	Pulse detection	20,000	N (small fluctuations)	~1.5 %	Carvalho et al.1
CNT-PDMS based kirigami structure		5,000	Ν	~400 %	Wang et al. ²
Microcrack- graphite thin films	Motion detection, vibration wave detection etc.	2,000	N (drift at the beginning)	≥ 50 %	Amjadi et al. ³
Rubbery strain sensors	Motion detection	<1,000	N	100 %	Kim et al.4
Silver-polystyrene spheres-PDMS	Motion detection	30	N	>80%	Hu et al.⁵
Graphene- polymer based kirigami structure	motion detection and perspiration monitoring	> 60,000	N (small drift)	~250 %	This work

Table S1. A comparison of this work with other stretchable devices

References

- A. F. Carvalho, A. J. Fernandes, C. Leitão, J. Deuermeier, A. C. Marques, R. Martins, E. Fortunato and F. M. Costa, *Adv. Funct. Mater.*, 2018, 28, 1805271-1805278.
- 2. Z. Wang, L. Zhang, S. Duan, H. Jiang, J. Shen and C. Li, *J. Mater. Chem. C*, 2017, **5**, 8714-8722.
- 3. M. Amjadi, M. Turan, C. P. Clementson and M. Sitti, *ACS applied materials & interfaces*, 2016, **8**, 5618-5626.
- 4. H.-J. Kim, A. Thukral and C. Yu, *ACS Appl. Mater. Interfaces*, 2018, **10**, 5000-5006.
- Y. Hu, T. Zhao, P. Zhu, Y. Zhang, X. Liang, R. Sun and C.-P. Wong, *Nano Res.*, 2018, 11, 1938-1955.