Supporting Information

Fabrication of SnS Nanowalls via Pulsed Plasma-Enhanced Chemical Vapor Deposition Using a Metal-Organic Single-Source Precursor

Charlotte Ruhmlieb*, Young Joo Lee, Christian Strelow, Tobias Kipp, and Alf Mews

Figure S-1. Powder X-ray diffraction pattern of the used precursor powder (first from top) in comparison to the calculated powder X-ray diffraction pattern of $[Sn(dmdtc)_2]$ (ref. [39]) and the measured powder X-ray diffraction patterns of $[Sn(dedtc)_4]$ and $[S_2Sn_2(dedtc)_4]$.

Figure S-2. (a) Scanning electron microscope images of tin-sulfide samples fabricated via plasma-enhanced chemical vapor deposition at substrate temperatures ranging from 250 °C to 425 °C. (b) Powder X-ray diffraction patterns corresponding to the samples deposited at the particular substrate temperature. The dominant (040) reflex is at 31.9 °.

Figure S-3. (a) Specific conductivity of the investigated tin-sulfide samples as a function of channel width (active contact area of mercury droplet and structure).