Electronic Supplementary Information (ESI)

Advance towards the utilization of Vis-NIR light energy by YF₃:Yb³⁺, Er³⁺ coating over ZnS microspheres triggering hydrogen production and pollutants disposal

Xiaoxiao Li,^a Kai Yang,^{*a} Changlin Yu,^{*b} Shi Yang,^a Kailian Zhang,^a Wenxin Dai,^c Hongbing Ji,^{*d} Lihua Zhu,^a Weiya Huang,^a Shaobo Ouyang^a

- a, School of Metallurgy and Chemical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China
- b, Faculty of Environmental Science and Engineering, Key Laboratory of Petrochemical Pollution Process and Control, Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China
- c, Research Institute of Photocatalysis, State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou, 350002, China
- d. School of Chemical Engineering Guangdong University of Petrochemical Technology, Maoming 525000, Guangdong, China.

 *Corresponding author: Kai Yang, Ph. D. Associate Professor Tel/Fax: +86-797-8312334

E-mail: yangkai19871006@126.com

- 2. *Corresponding author: Changlin Yu, Ph. D. Professor Tel/Fax: +86-668-2982253
 E-mail: yuchanglinjx@163.com
- 3. *Corresponding author: Hongbing Ji, Ph. D. Professor Tel/Fax: +86-668-2982253

E-mail: jihb@mail.sysu.edu.cn

Electronic Supplementary Information (ESI)

Fig.S1 FT-IR spectra of ZnS, YYE and YYE/ZnS composites.

The chemical bonds and functionalized groups in the material could be seen from FT-IR spectra. The FT-IR spectra of ZnS, YYE and YYE/ZnS composites are shown in Fig.S1. It is indicated that the peak in 3440 cm⁻¹ belongs to the stretching vibrating of O–H mode from water adsorbed on material surface. In addition, another peak observed at 1620 cm⁻¹, corresponding to the different O–H vibrational mode of the physisorbed water.^{1,2} The peak at 600 cm⁻¹ could confirm the presence of Zn–S vibration.

Samples	Surface Area	Pore Volume	Average Pore Size
	(m ² /g)	(cm ³ /g)	(nm)
ZnS	4.4428	0.0103	9.2563
YYE(10)/ZnS	3.0334	0.0117	15.4703
YYE(20)/ZnS	8.8253	0.0230	10.4342
YYE(30)/ZnS	2.7034	0.0101	14.9209
YYE(40)/ZnS	3.5881	0.0136	15.1808

 Table S1
 BET surface areas, pore volume, and pore size over all the samples.

Fig.S3 SEM images of (a) ZnS; (b) YYE (c) YYE(10)/ZnS; (d) YYE(20)/ZnS; (e) YYE(30)/ZnS samples.

Fig. S4 TEM image of YYE(20)/ZnS.

Fig. S5 Mott–Schottky plots of bare ZnS, and YYE(20)/ZnS samples (glassy carbon electrode as catalysts support).

Fig. S7 Comparison of the photocatalytic stabilities of pristine ZnS and YYE(20)/ZnS in the photocatalytic reduction of Cr (VI).

Fig. S8 Diagram of (a) photocatalytic hydrogen production; (b) 980 nm laser light; (c) 400 W metal halide lamp.

References

- 1 Y. Piña-Pérez, O. Aguilar-Martínez, P. Acevedo-Peña, C.E. Santolalla-Vargas, S. Oros-Ruíz, F. Galindo-Hernández, R. Gómez and F. Tzompantzi, *Appl. Catal. B: Environ.*, 2018, 230, 125-134.
- 2 V. Sabaghi, F. Davar and Z. Fereshteh, Ceram. Int., 2018, 44, 7545-7556.