Supporting Information

An energy band engineering design to enlarge the band gap of

KTiOPO₄ (KTP)-type sulfates via aliovalent substitution

Fei Yang, † Lijuan Huang, † Xiaoyu Zhao, ‡ Ling Huang, * † Daojiang Gao, † Jian Bi, †

Xin Wang, [‡] and Guohong Zou*[‡]

[†] College of Chemistry and Materials Science, Sichuan Normal University, Chengdu,

610068, P. R. China.

[‡]College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China.

E-mail: huangl026@sina.com; zough@scu.edu.cn

CONTENTS

 Table S1. Atomic coordinates, equivalent isotropic displacement parameters and calculated Bond Valence Sums for RbSnFSO₄.

Table S2. Atomic coordinates, equivalent isotropic displacement parameters and calculated Bond Valence Sums for RbSbF₂SO₄.

Table S3. Selected Bond lengths (Å) and angles (deg) for RbSnFSO₄.

Table S4. Selected Bond lengths (Å) and angles (deg) for RbSbF₂SO₄.

Fig. S1. TGA curves for RbSnFSO₄ and RbSbF₂SO₄.

Fig. S2. IR spectra for RbSnFSO₄ and RbSbF₂SO₄.

Fig. S3. Electron-density difference maps for SnRbFSO₄ and RbSbF₂SO₄.

atom	Х	у	Z	$U_{eq}(Å^2)$	BVS
Sn1	10131(9)	12500	2715(5)	11(2)	2.033
Sn2	5257(9)	2500	2322(5)	11(2)	1.827
Rb1	7682(9)	7500	4548(7)	17(3)	0.979
Rb2	2443(12)	-2500	508(7)	11(2)	0.719
S1	7285(3)	-2500	1394(17)	9(5)	5.980
S2	2840(3)	7500	3497(18)	10(5)	6.457
F1	3010(8)	2500	1518(4)	15(13)	1.119
F2	8995(9)	12500	3969(4)	22(15)	1.092
01	6170(6)	-138(10)	1184(3)	13(10)	2.076
O2	8670(9)	-2500	755(5)	17(17)	1.786
O3	7884(10)	-2500	2414(5)	16(16)	1.664
O4	3704(11)	7500	2607(6)	27(2)	1.600
05	1256(12)	9020(2)	3513(8)	17(2)	1.579
06	3938(10)	7500	4356(6)	27(2)	1.874

Table S1. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³), and calculated Bond Valence Sums for RbSnFSO₄. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

Table S2. Atomic coordinates (×10⁴) and equivalent isotropic displacement parameters (Å²×10³), and calculated Bond Valence Sums for RbSbF₂SO₄. $U_{(eq)}$ is defined as one third of the trace of the orthogonalized U_{ij} tensor.

atom	X	у	Z	U _{eq} (Å ²)	BVS
Sb1	-6694(6)	-5817(5)	-9765(2)	22(2)	3.043
Rb1	-5152(9)	-1589(7)	231(3)	27(2)	1.35
S1	-7039(3)	-3654(2)	-5209(6)	26(7)	5.927
F1	-8708(3)	-5629(6)	-9419(18)	29(17)	1.026
F2	-6776(7)	-6558(6)	-6430(14)	29(15)	0.915
01	-7770(10)	-2601(8)	-6229(18)	31(19)	1.855
O2	-8031(10)	-4393(8)	-3938(19)	34(2)	1.622
03	-6458(10)	-4237(7)	-762(2)	32(2)	1.933
04	-5846(9)	-3345(7)	-3586(17)	30(17)	1.691

Sn1—F2	2.008(7)	O1—S1—Rb2 ^x	117.9(2)
Sn2—F1	2.014(6)	O2—S1—Rb2 ^x	58.35(19)
Sn2—O1	2.226(6)	O2—S1—O1	109.0(3)
Sn2—Rb2	4.1099(9)	O2—S1—Rb2	123.4(3)
Sn2—Rb1	4.3410(10)	O2—S1—O3	113.3(5)
Rb1—F2	2.918(3)	O3—S1—O1	109.5(3)
Rb1—O6	2.904(8)	O3—S1—Rb2	123.3(3)
Rb2—F1	2.918(3)	O4—S2—O5	116.9(5)
Rb2—O1	3.218(5)	O4—S2—Rb1	80.5(4)
S1—O3	1.467(8)	O5—S2—Rb1	141.4(4)
S1—O2	1.440(7)	O6—S2—O4	115.7(5)
S1—O1	1.495(5)	O6—S2—Rb1	35.2(4)
S2—O4	1.449(8)	O6—S2—O5	116.7(5)
S2—O5	1.454(10)	Sn2—O1—Rb2	96.36(16)
S2—O6	1.425(8)	Sn2—F1—Rb2	111.57(14)
Sn1—O5 ⁱ	2.232(10)	S1—O1—Sn2	123.2(3)
Sn2—O1 ^v	2.226(5)	S1—O1—Rb2	105.0(3)
Rb2—O2 ^x	3.174(5)	S2—O6—Rb1	128.3(5)
Rb2—S1 ^x	3.6831(19)	$F2$ — $Sn1$ — $O5^i$	85.3(3)
O2—Rb2 ^x	3.174(5)	O5 ⁱ —Sn1—Rb1	111.8(3)
S1—Rb2 ^x	3.6831(19)	O1—Sn2—O1 ^v	73.8(3)
S1—O1 ^{xi}	1.495(5)	O1v—Sn2—Rb2	96.44(13)
S2—O5 ^{xv}	1.454(10)	O1v—Sn2—Rb1	90.91(13)
F1—Sn2—O1	84.66(19)	F1—Sn2—Rb1 ^{vi}	135.99(10)
F1—Sn2—Rb2	41.32(6)	F1—Rb2—O2 ^x	171.16(17)
F1—Sn2—Rb1	135.99(10)	F2—Rb1—O3 ^{iv}	71.19(14)
F2—Sn1—Rb1	38.64(4)	O6—Rb1—O3 ^{iv}	91.4(2)
F2—Rb1—O6	110.27(14)	S1—O3—Rb1 ^{vi}	158.5(5)
O1—Sn2—Rb2	51.08(13)	S1—O2—Rb2 ⁱⁱ	148.5(5)
O1—Sn2—Rb1	135.79(13)	S2—O4—Rb2 ^{iv}	133.6(5)
O1—S1—Rb2	53.1(2)	S2—O6—Rb1 ^{xii}	111.84(16)

Table S3. Selected Bond lengths (Å) and angles (deg) for RbSnFSO₄.

Symmetry codes: (i) x+1, -y+5/2, z; (ii) x+1, y, z; (iii) -x+2, -y+2, -z+1; (iv) x, y+1, z; (v) x, -y+1/2, z; (vi) x, y-1, z; (vii) -x+1, y-1/2, -z; (viii) -x+1, -y, -z; (ix) x-1, y, z; (x) -x+1, -y-1, -z; (xi) x, -y-1/2, z; (xii) -x+1, -y+2, -z+1; (xiii) -x+1, y-1/2, -z+1; (xiv) -x+1, -y+1, -z+1; (xv) x, -y+3/2, z.

Sb1—F2	1.933(7)	F2—Sb1—F1	85.8(4)
Sb1—F1	1.947(6)	F2—Sb1—O3	84.9(3)
Sb1—O3	2.146(9)	F1—Sb1—O3	87.8(3)
S1—O2	1.436(10)	O2—S1—O1	109.5(6)
S1—O4	1.463(9)	O4—S1—O1	111.8(5)
S1—O1	1.497(9)	O2—S1—O3	111.0(5)
S1—O3	1.525(10)	O4—S1—O3	107.2(6)
Rb1—O4	2.909(8)	O1—S1—O3	103.6(5)
Rb1—F1 ^{vi}	2.873(9)	O2—S1—O4	113.3(6)
Sb1—Rb1 ^v	4.3355(15)	S1—O3—Sb1	139.6(6)
O1—Sb1 ^{vi}	2.248(9)	S1—O4—Rb1	137.8(5)
Rb1—F2 ^{vi}	3.065(7)	F2—Sb1—O1 ⁱ	83.8(3)
Rb1—O2 ^{vi}	3.098(9)	F1—Sb1—O1 ⁱ	84.7(3)
Rb1—O2 ^{ix}	3.177(10)	O3—Sb1—O1 ⁱ	166.9(3)
Rb1—F1 ^x	3.185(9)	F2—Sb1—Rb1 ⁱ	45.8(2)
Rb1—O1 ^{xi}	3.320(10)	F1—Sb1—Rb1 ⁱ	39.9(3)
Sb1—O1 ⁱ	2.248(9)	O3—Sb1—Rb1 ⁱ	86.1(3)
Sb1—Rb1 ⁱ	4.0799(16)	O3—Sb1—Rb1 ⁱⁱⁱ	62.4(3)
Sb1—Rb1 ⁱⁱ	4.0828(16)	F2—Sb1—Rb1 ⁱⁱ	116.5(2)
Sb1—Rb1 ^{iv}	4.3328(16)	F1—Sb1—Rb1 ⁱⁱ	49.6(3)
Rb1—O3 ^{xi}	3.478(9)	O3—Sb1—Rb1 ⁱⁱ	126.4(3)
Rb1—S1 ^{xi}	3.812(3)	F1 ^{vi} —Rb1—O4	66.8(2)
O2—Rb1 ⁱ	3.098(9)	S1—O1—Rb1 ^{xii}	97.3(4)
S1—Rb1 ⁱⁱⁱ	3.818(3)	O2—S1—Rb1 ^{xii}	165.6(4)
F2—Rb1 ^{iv}	2.949(7)	O4—Rb1—O1 ^{xi}	87.8(2)
F2—Rb1 ⁱ	3.065(7)	S1—O1—Sb1 ^{vi}	136.6(5)
F1—Rb1 ⁱ	2.873(9)	S1—O3—Rb1 ^{xii}	90.6(4)
F1—Rb1 ⁱⁱ	3.185(9)	Sb1—O3—Rb1 ^{xii}	127.8(4)
F1—Sb1—Rb1 ⁱⁱⁱ	33.88(19)	S1—O2—Rb1 ⁱ	142.2(6)
F1—Sb1—Rb1 ^v	122.4(2)	O4—Rb1—O3 ^{xi}	61.9(2)
O3—Sb1—Rb1 ^v	148.5(3)	Sb1—F2—Rb1 ⁱ	107.3(3)
F1—Sb1—Rb1 ^{iv}	115.1(2)	Sb1—F1—Rb1 ⁱ	114.3(4)
F2—Sb1—Rb1 ^{iv}	34.5(2)	O2—S1—Rb1 ⁱⁱⁱ	79.2(4)
O4—Rb1—O1 ^{vii}	111.5(2)	O4—Rb1—F2 ^{vi}	66.2(2)
O4—Rb1—O2 ^{ix}	85.9(3)	O4—Rb1—F1 ^x	139.3(2)
F2—Sb1—Rb1 ^v	104.6(2)	Sb1—F2—Rb1 ^{iv}	123.8(3)

Table S4. Selected Bond lengths (Å) and angles (deg) for $RbSbF_2SO_4$.

Symmetry codes: (i) -x-3/2, y-1/2, z-1/2; (ii) -x-3/2, y-1/2, z-3/2; (iii) x-1/2, -y-1/2, z-1; (iv) -x-1, -y-1, z-1/2; (v) -x-1, -y-1, z-3/2; (vi) -x-3/2, y+1/2, z+1/2; (vii) x+1/2, -y-1/2, z+1; (viii) -x-1, -y-1, z+1/2; (ix) x+1/2, -y-1/2, z; (x) -x-3/2, y+1/2, z+3/2; (xi) x, y, z+1; (xii) x, y, z-1; (xiii) x-1/2, -y-1/2, z.

Fig. S1. TGA curves for $RbSnFSO_4(a)$ and $RbSbF_2SO_4(b)$.

Fig. S2. IR spectra for $RbSnFSO_4(a)$ and $RbSbF_2SO_4(b)$.

Fig. S3. Electron-density difference maps for $SnRbFSO_4$ (a, b) and $RbSbF_2SO_4$ (c, d).