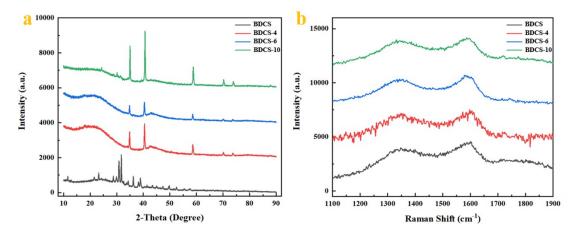
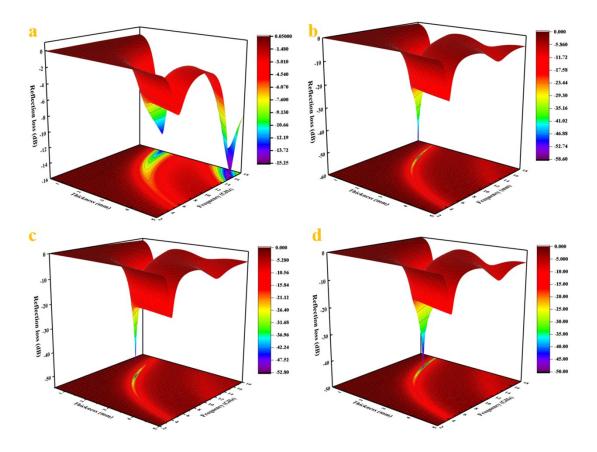
A low-cost strategy to synthesis MnO nanorods anchored on 3D biomass derived carbon with superior microwave absorption properties

Peitao Hu¹, Shun Dong^{1,*}, Xiutao Li², Jingmao Chen^{1,2},

Xinghong Zhang¹, Ping Hu^{1,*}, Shengsen Zhang³


¹National Key Laboratory of Science and Technology for National Defence on Advanced Composites in Special Environments, Harbin Institute of Technology, Harbin 150001, PR China

²China Academy of Launch Vehicle Technology, Beijing 100076, PR China


³College of Materials and Energy, South China Agricultural University, Guangzhou 510463, PR China

*Corresponding author: Tel/fax: +86 451 86403016.

E-mail address: dongshun@hit.edu.cn (S. Dong); Hupinghit88@163.com (P. Hu)

Fig. S1 (a) XRD and (b) Raman spectra of BDC (donated as BDCS) and BDC/MnO NRs composites (donated as BDCS–4, BDCS–6 and BDCS–10).

Fig. S2 Three–dimensional graphs of *RL* values of BDC and BDC/MnO NRs composites (a) BDCS, (b) BDCS–4, (c) BDCS–6 and (d) BDCS–10.