Electronic Supplementary Information for

Combinatory Approach Towards Organic Polymer Luminescent Materials Design

Tao Wang,^{a,b} Xiaoge Su,^{c,d} Xuepeng Zhang,^a Wenhuan Huang,^a Linkun Huang,^a Xingyuan Zhang, *^b Xiang Sun, *^{c,d} Yi Luo^a and Guoqing Zhang*

^aHefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, China. E-mail: gzhang@ustc.edu.cn (G. Zhang) ^bDepartment of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China. E-mail: zxym@ustc.edu.cn (X. Zhang)

^cDivision of Arts and Science, NYU Shanghai, Shanghai, China. Email: xiang.sun@nyu.edu (X. Sun) ^dNYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, China.

Supplementary Figures and Tables

Figure S1. DSC curves of CZBP-PLA, CZNI-PLA, CZAQ-PLA measured at 10 °C/min under N₂ atmosphere.

Figure S2. Steady-state emission spectra of CZNI-PLA (a, Ex slit 6 nm, Em slit 6 nm) and CZBP-PLA (b, Ex slit 3 nm, Em slit 4 nm) in THF, EtOAc, DCM and DMF, respectively.

Figure S3. Normalized UV-vis absorption of CZAQ-PLA in dichloromethane (DCM), tetrahydrofuran (THF), ethyl acetate (EtOAc), and N, N'-dimethyl formamide (DMF).

Figure S4. Delayed emissions of CZNI-PLA (a), CZBP-PLA (b), and CZAQ-PLA (c) at 298 K in vacuum with various delayed time.

Figure S5. Time-resolved PL decay curves of CZBP-PLA measured at 422 nm in vacuum at 77 K.

Figure S6. Calculated frontier molecular orbitals of CZAQ-OH for electronic transition of T_1 and T_2 based on optimized T_1 structure at ω B97XD/6-311G* level.

Figure S7. Particle diameters of CZBP-PLA, CZNI-PLA, and CZAQ-PLA nanoparticles, respectively.

	λ ^a air (nm)	λ ^b _{vacuum} (nm)	λ ^c _{77k} (nm)	λ ^e _{delay} (nm)	τ ^e _{air} (S)	τ ^f _{vacuum} (S)	$rac{ au^{ ext{g}}_{77 ext{k}}}{ ext{(S)}}$	τ ^h _{delay} (S)
CZBP- PLA	445	445	445	484	7.276084×10^{-5} (58.47%) 4.26353 \times 10^{-7} (0.98%) 2.546773 × 10^{-4} (40.54%)	8.40563×10 ⁻³ (40.95%) 0.0280176 (35.08%) 1.842482×10 ⁻ - ³ (15.87%)	$\begin{array}{c} 1.638874 \times 10^{-2} \\ (4.97\%) \\ 5.017509 \times 10^{-2} \\ (58.58\%) \\ 0.1238015 \\ (36.45\%) \end{array}$	1.767273×10 ⁻ 2 (5.05%) 0.0545019 (55.58%) 0.1446192 (39.37)
CZNI- PLA	512	526	518	576	8.420017×10 ⁻ 9 (18.23%) 6.484133×10 ⁻ 10 (1.68%) 1.868194×10 ⁻	1.269748×10^{-2} (9.72%) 7.683653 × 10^{-2} (90.10%) 9.417504 × 10^{-2}	1.921746×10 ⁻ (85.89%) 2.983466×10 ⁻ 8 (14.11%)	0.1151937 (7.40%) 0.2265507 (92.60%)

Table S1. Lifetime data for CZBP-PLA, CZNI-PLA, CZAQ-PLA films.

					8	5		
					(80.09%)	(0.18%)		
CZAQ- PLA	576		580	582	1.131978×10 ⁻ 5 (28.12%) 4.611181×10 ⁻	1.28672×10 ⁻⁵ (31.37%) ² 6.496668×10 ⁻ 8 0.1179909	1.768052×10 ⁻ 2 (9.13%) 0.1218552	
		577			(70.99%)	(0.58%)	(90.26%)	(90.63%)
					6.488263×10 ⁻	4.893768×10 ⁻ 5	1.068068×10 ⁻ 4	7.803662×10 ⁻ 5
					(0.89%)	(68.05%)	(0.27%)	(0.24%)

a. steady-state emission maxima under air at 298 K ($\lambda_{ex} = 365$ nm);

- b. steady-state emission maxima under vacuum at 298 K ($\lambda_{ex} = 365$ nm);
- c. steady-state emission maxima under vacuum at 77 K ($\lambda_{ex} = 365$ nm);
- d. delayed emission maxima under vacuum at 77 K ($\lambda_{ex} = 365$ nm);
- e. measured lifetimes of steady-state emission in air at 298 K;
- f. measured lifetimes of steady-state emission in vacuum at 298 K;
- g. measured lifetimes of steady-state emission in vacuum at 77 K;
- h. measured lifetimes of delayed emission in vacuum at 77 K.

Table	S2 .	Nano	particl	e sizes	of PLAs	3.

PLA	Diameter (nm)
CZBP-PLA	30
CZNI-PLA	66
CZAQ-PLA	39

Figure S8. ¹H NMR spectrum of CINNI in d_6 -DMSO.

Figure S9. ¹H NMR spectrum of CZBP-OH in d_6 -DMSO.

Figure S10. ¹H NMR spectrum of **CZAQ-OH** in d_6 -DMSO.

Figure S11. ¹H NMR spectrum of CZNI-OH in d_6 -DMSO.

Figure S12. ¹H NMR spectrum of CZBP-PLA in CDCl₃.

Figure S13. ¹³C NMR spectrum of CZBP-PLA in CDCl₃.

Figure S14. Section of ¹H-¹H COSY NMR spectrum of CZBP-PLA in CDCl₃.

Figure S15. Section of ¹H-¹³C COSY NMR spectrum of CZBP-PLA in CDCl₃.

Figure S16. ¹H NMR spectrum of CZAQ-PLA in CDCl₃.

Figure S17. ¹³C NMR spectrum of CZAQ-PLA in CDCl₃.

Figure S18. Section of ¹H-¹H COSY NMR spectrum of CZAQ-PLA in CDCl₃.

Figure S19. Section of ¹H-¹³C COSY NMR spectrum of CZAQ-PLA in CDCl₃.

Figure S20. ¹H NMR spectrum of CZNI-PLA in CDCl₃.

Figure S21. ¹³C NMR spectrum of CZNI-PLA in CDCl₃.

Figure S22. Section of ¹H-¹H COSY NMR spectrum of CZAQ-PLA in CDCl₃.

Figure S23. Section of ¹H-¹³C COSY NMR spectrum of CZAQ-PLA in CDCl₃.

Figure S24. ESI mass spectrum of CZBP-OH.

Figure S25. ESI mass spectrum of CZAQ-OH.

Figure S26. ESI mass spectrum of CZNI-OH.

Figure S27. GPC traces for CZBP-PLA (a), CZNI-PLA (b), CZAQ-PLA (c).