Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Information

Strong Thickness-Dependent Quantum Confinement in All-inorganic Perovskite Cs₂PbI₄ with Ruddlesden-Popper Structure

Yu-Feng Ding¹, Qian-Qi Zhao¹, Zhuo-Liang Yu¹, Yu-Qing Zhao¹, Biao Liu¹, Peng-

Bin He¹, Hong Zhou¹, Kenli Li, Shuang-Feng Yin², Meng-Qiu Cai^{1,4*}

¹Key Laboratory for Micro/Nano Optoelectronic Devices of Ministry of Education & Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics and Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China

²College of Chemistry and Chemical Engineering, Hunan University, Changsha,

410082, People's Republic of China

³The College of Computer Science and Elec-tronic Engineering and National Supercomputing Center in Changsha, Hunan University, Hunan 410082, China ⁴Synergetic Innovation Center for Quantum Effects and Applications (SICQEA), Hunan Normal University, Changsha 410081, China

^{*}The corresponding author, Electronic address: <u>mqcai@hnu.edu.cn</u> (M.Q. Cai)

Figure S1. The tested atoms structure without dangling bonds for monolayer perovskite CsPbI₄.

Figure S2. The band structure of model in our manuscript with PBE (a) and PBE+SOC (b). The band structure of model 2 without dangling bond with PBE (c) and PBE+SOC (d) for one layer perovskite CsPbI₄.

Figure S3. The calculated band structures of all-inorganic 2D layered RP perovskite Cs_2PbI_4 (L=4, 5) by PBE.

Figure S5. (a) The band edge energy shift of VB and CB with respect to the lattice dilation along the a_0 direction for the bilayer perovskite. Solid lines represent the linear fit, which defines DP constants. (b) The total energy as a function of lattice deformation along the a_0 directions. Solid lines are the parabola fittings, which give elastic constant. I₀ is the lattice constant in the transport direction, and $\Delta I=I_0$ -I is the deformation of I₀.

Figure S6. (a) The band edge positions of VB and CB with respect to the lattice dilation along the a_0 direction for the trilayer perovskite. Solid lines represent the linear fit, which defines DP constants. (b) The total energy as a function of lattice deformation along the a_0 direction. Solid lines are the parabola fittings, which give elastic constant.

Table S1. The bandgap values of perovskite Cs_2PbI_4 with different thicknesses calculated by PBE, PBE+SOC, LDA and HSE+SOC.

Layer	PBE (eV)	PBE+SOC (eV)	LDA (eV)	HSE+SOC (eV)
1L	1.859	1.019	1.544	1.544
2L	1.592	0.823	1.415	1.333
3L	1.558	0.804	1.383	1.310
4L	1.540			
5L	1.539			