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Part 1. Supporting Data.
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Fig. S1 (a) NaYF;:Yb/Er (25/2%) nanoparticles (core, ~23.9+1.9 nm) and (b)
NaYF,4:Yb/Er (25/2%)@ NaYF,: Nd(20%) nanoparticles (core-shell, ~31.3+1.5 nm).
(c) HRTEM image of the corresponding core-shell nanoparticles. (d) Synthesis process
of IR-806. (e) Centrifugation results of binding of IR-806 (left) and IR-780 (right) to
the nanoparticles. IR-806 can coordinate with UCNPs through the carboxyl group.
Successful synthesis of IR-806 was confirmed by the absorption peak shifted from 780
nm to 806 nm (Fig. S4) and the NMR spectra (Fig. S5). After the dye-conjugating
process, IR-806, rather than IR-780, could attach UCNPs, which can be directly
observed from the color changes after centrifuged the mixed solutions of dyes and

UCNPs. Moreover, the absorption spectra and excitation spectra of IR-806 were also



kept ~ 800 nm after conjugated on the surface of UCNPs (Fig. S6 and S7). (f) FTIR
spectra of IR-806 (black line), UCNPs (red line), IR-806 conjugated UCNPs (green
line). After IR-806 conjugating on the surface of UCNPs, the mixtures generated many
FTIR peaks ranged from 1000 to 1500 cm™!, which arose from IR-806. Moreover, due
to IR-806 coordinate with UCNPs through the carboxyl group, the vibration mode of
the carboxyl group (1710 cm!') was disappeared due to the coordination interaction

with nanoparticles. All these results demonstrated that dyes IR-806 successfully

conjugated on the surface of UCNPs.
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Fig. S2 XRD diffraction pattern of the standard reference pattern B-NaYF, (JCPDS-16-

0334, bottom) and the synthesized NaYF,;:Yb/Er(25/2%) @ NaYF4:Nd(20%)

nanoparticles.



Fig. S3 High-resolution TEM of the NaYF4Yb/Er (25/2%)@NaYF4:Nd (20%)
upconversion nanoparticles, the typical d-spacing of lattice was about 0.52 nm, which

corresponded to the (100) plane of the hexagonal NaYF, phase.
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Fig. S4 Absorption spectra of IR-780 (black line) and carboxylic acid derivative IR-

806 (red line) in CHCls.
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Fig. S5 'H-NMR (500 MHz, CDCl;) spectrum of IR-806.
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Fig. S6 Absorption spectra of IR-806 (black line) and dye-sensitized NaYF4: Yb/Er

(25/2%)@ NaYF,: Nd(20%) nanoparticles (red line).
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Fig. S7 Excitation spectra of IR-806 after conjugated on UCNPs, the monitored

emission wavelength was kept 830 nm.
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Fig. S8 (a) UCL of the IR-806 sensitized core-shell UCNPs under excitation of Xe lamp
(excitation wavelength ~800 nm, ~ 1mW/cm?), (b) the corrected upconversion
excitation spectra of the IR-806 sensitized core-shell UCNPs, (c) upconversion
excitation spectra of the IR-806 sensitized core-shell UCNPs without correction. (d)
Emission spectra of the Xe lamp. Due to the IR-sensitized UCNPs could be excited by
Xe lamp (a), the upconversion excitation spectra could be obtained, as shown in (b). It
should be noted that the upconversion excitation spectra should be corrected. Without
correction (c), some inference peak would appear. In the FLS980 system, the excitation
spectra can be obtained as: Ecy(A)=Iem(A)/ Trer 1amp(A) =k(A), where k(X) is a ratio constant
at different wavelength position. For upconversion, Z.,,(A)=k(A)(Zrer  1amp(A))",  Where

n>1, which indicates a main multi-photon emission process. Then the the excitation



SPGCtI”a can be obtained as: Eexcitation(x): ]emission(}‘)/lreflampo‘):k(k)(lreﬂamp(x))n/lreflamp(}‘)
= k(M) Uref 1amp(A))™ L. Lrer lamp(A) can be test the emission from the Xe lamp (d), n could
be obtained from the log-log plots of the UCL intensity versus laser power densities,

here n was 1.8, then the corrected upconversion spectra could be obtained in figure (b).
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Fig. S9 Absorption spectra of IR-806 obtained in the whole visible range.
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Fig. S10 The enhanced downconversion emission (~977 nm) of Yb** of
NaYF4: Yb/Er(25/2%) @ NaYF4:Nd(20%) nanoparticles after dye-sensitization.
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Fig. S11 The size distribution of (a) NaYF,: Yb/Er (10/2%) nanoparticles, (b) NaYF,:
Yb/Er (20/2%) nanoparticles , (c) NaYF,: Yb/Er (25/5%) nanoparticles , (d) NaYF,:

Yb/Er (25/10%) nanoparticles , (€) NaYF,: Yb/Er (25/20%) nanoparticles , (f) NaYF,:



Yb/Er (10/2%)@ NaYF,: Nd(20%) nanoparticles , (g) NaYF,: Yb/Er (20/2%)@
NaYF,;: Nd(20%) nanoparticles, (h) NaYF,: Yb/Er (25/5%)@ NaYF,: Nd(20%)
nanoparticles, (i) NaYF,;: Yb/Er (25/10%)@ NaYF,: Nd(20%) nanoparticles, (j)

NaYF,: Yb/Er (25/20%)@ NaYF,: Nd(20%) nanoparticles.
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Fig. S12 (a) TEM images of NaYF,: Yb/Er (30/2%) nanoparticles and (b) their size

distribution.
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Fig. S13 (a) TEM image of NaYF,: Yb/Er (40/2%) nanoparticles and (b) their size

distribution.
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Fig. S14 (a) TEM image of NaYF,: Yb/Er (12/2%) nanoparticles and their size
distribution, (b) TEM image of NaYF,: Yb/Er (12/2%)@ NaYF4: Nd(20%)
nanoparticles and their size distribution, (c¢) UCL spectra of NaYF,: Yb/Er (12/2%)@
NaYF,: Nd(20%) nanoparticles without or with dye sensitization under an excitation
of 808 nm. (d) The changed R/G ratio of NaYF,4: Yb/Er (12/2%)@ NaYF,: Nd(20%)

nanoparticles after dye-sensitization.
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Fig. S15 (a) TEM image of NaYF,: Yb/Er (18/2%) nanoparticles and their size
distribution, (b) TEM image of NaYF,: Yb/Er (18/2%)@ NaYF4: Nd(20%)
nanoparticles and their size distribution, (c) UCL spectra of NaYF,: Yb/Er (18/2%)@
NaYF,: Nd(20%) nanoparticles without or with dye sensitization under an excitation

of 808 nm. (d) The changed R/G ratio of NaYF,4: Yb/Er (18/2%)@ NaYF,: Nd(20%)

nanoparticles after dye-sensitization.
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Fig. S16 (a) TEM image of NaYF,: Yb/Er (25/30%) nanoparticles and their size
distribution, (b) TEM image of NaYF,: Yb/Er (25/30%)@ NaYF,: Nd(20%)
nanoparticles and their size distribution, (c¢) UCL spectra of NaYF,: Yb/Er(25/30%)@
NaYF,: Nd(20%) nanoparticles without or with dye sensitization under an excitation
of 808 nm. (d) The changed R/G ratio of NaYF,: Yb/Er (25/30%)@ NaYF,: Nd(20%)

nanoparticles after dye-sensitization.
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Fig. S18 UCL spectra of NaYF,:Yb/Ho/Ce (10/2/10 %) @NaYF, nanoparticles under

an excitation of 808 nm.
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Fig. S19 UCL spectra of Ho-NPs (black line, ~20 mg/mL) and mixed solutions (red
line, Ho-NPs (~20 mg/mL ) + Dye-NPs (~0.5 mg/mL )) under an excitation of 980

nm.



Part II. Theory and Analysis.

Theory analysis of different upconversioin processes:
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Fig. 20 Simplified energy-level diagrams illustrating the UC1 process.
dN,
dr M31Ny = WiNyy Ny = RNy 1)
%—WN Ny-M,,N,-W,N,, .N,-R,N
dt 0°'Yp1''0 21°72 2°'Yp1'Y2 2772 (2)
dN,
“ar = WilNypiNy - RsNy 3)
dN,

——=W;,Ny, Ny - RN,
dt (4)



To solve the rate equations in stationary conditions, (1)~(4) convert to:
M3 Ny =W Nyp Ny - RNy =0 (5)

WoNypNo =My Ny = W)Nyp Ny = R,N, =0 (6)
W Ny Ny = R3N3=0 (7)

W;)Nyp Ny = RN, =0 (8)

According to (7), we obtain:

_ WlNYblNl

N3
Bs9)

According to (8), we obtain:

WZNYblNZ
N,=—"—""
Re (10
Then, according to (9) and (10):

N, W,R,N,
Ny WiRsN, (1)

According to (5), we obtain:

M21

Ny
N, WiNy,, +Ry (12)

According to (11) and (12):

WiMjyR,
WiR3(Ry + W Nyy,) (13)

N3
N,
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Fig. 21 Simplified energy-level diagrams illustrating the UC2 process.

dN,
- = N

dt (14

dN,

— =W,Ny,Ny-W,Ny, N, — R,N

dt 0°7Ybh1''0 2°7Yb1772 2 2(15)
dN,

——=M,3N, - R;N

dt 43°% 4 3 3(16)

dN,

— =W,Ny,N, -R,N

dt 2°7Yb177 2 4 4(17)

To solve the rate equations in stationary conditions, (14)~(17) convert to:
~R{N1 =0 (1)

WoNypNo=W)Nyyp Ny = RN, =0 (19)

M 3N, - R3N3:0 (2())

WyNyy Ny =RyN, =0 (21)



According to (20), we obtain:

2|w2

M4—3
4 A3

(22)
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Fig. 22 Simplified energy-level diagrams illustrating the UC3 process.

dN,
—— =My N, ~W,Ny,N, - R,N

dt 21°72 1°'Ybh1''1 1 1(23)

dn,

— 2 =WNy Ny -~ MyyN, = WyNyy Ny = CyoN N, = RN

dt 0°'Yp1''0 21°72 2°'Yp1'Y2 42°74°%2 2 2(24)
dN,

— = W,Ny,,Ny + 2C,,N,N, - RN

dt 17'Ybh1''1 42774772 33 (25)

dn,

— =W,Ny,,N, - CyoN,N,— R,N

dt 2°'Yp1'Y2 4277472 47" 4 (26)

To solve the rate equations in stationary conditions, (23)~(26) convert to:
Moy Ny =W Nyp Ny - RN, =0 (27)
WoNypNo = MaiNy = WoNyp Ny = C4oNyNy = RN, =0 (28)

WilNyp Ny + 20N N, —ReN3 =0 (99



W3Nyp Ny = C4aNyN, - R4N4:0 (30)

Considering that for UC3 the cross-relaxation process between N, and N, is the main
population process for red emission, the population process W, is neglectable,
moreover, the radiative rate of R; and R, can also be neglectable. Then (27)~(29)

become:

WoNypiNg = WoNyy Ny = CpNyN, =0 (31)
204 NgN; = RsN3=0 (39

According to (32), we obtain:

2C,;,N,

Rs (33)

N3
N,
According to (30), we obtain:

_ WZNYblNZ

4_C42N2+R4 (34)
Inserting (34) to (28):
2C,,WoNy" + (WoR4 = CipWNo)Ny = WoNoR, = 0 (35)

According to (35), we get:

21172 2 117282
_ CypyWoNy-WyR, + \/R4W2 + 6C,,W,R,W N, + C,,WNy

2 4C,,W, (36)

According to (33) and (36), we get:

=

21172 2 1472 £ 2
s _ R+ Cloly JRAWS + 6C, W R W N, + CLWENS

. 2R, W, 2R, W, 37)

=
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Fig. 23 Simplified energy-level diagrams illustrating the UC4 process.

dN,

=My Ny = CygNyNy = Wi Ny Ny = RyN 58)
dn,

gt~ WollymNo + CiNyNy = Mg Ny = Wolyp Ny = RN, (39)
dN,

— > =W,Ny,,N, + C4,;N,N, - R;N

dt 17'Ybh1''1 41774771 3 3(40)

dn,

—=W,Ny,,N, - Cy;N,N, — R,N

dt 2WVyp1iV2 = Lg1iValVy 44(41)

To solve the rate equations in stationary conditions, (38)~(41) convert to:
M Ny = CogNyNy = WiNypy Ny = RNy = 0 (42
WoNypiNg + C4iNyNy = My Ny = W,Ny Ny = RN, =0 (43)

WiNyp Ny + CNyNy = R3N3 =0 44y



W3Nyp Ny = C4iNyN1 = RyN, =0 (45)

Considering that for UC4 the cross-relaxation process between N, and N, is the main
population process for red emission, the population process W, is neglectable,
moreover, the radiative rate of R; and R, can also be neglectable. Then (42)~(44)

become:
My Ny = CyyNyN; =0 (46)

WoNyp1Ng + CyNyNy = My Ny = W;Ny Ny =0 (47)

CaNyNy = R3N3 =0 (49

According to (48):
E _ C4~1N1

Ne Ry (49)
(46)+(47):

WoNypNog=W,Nyy N, =0 (50)

According to (50):
WONO
N, =
W2 (s1)
(46)-(45):

M Ny = WiNyp Ny + RNy =0 (59
According to (52):

(WZNYbl - M21)
=——— N

4 R4 2 (53)

According to (51) and (53):



_ (WZNYbl - MZl)WONO

* Ry W2 (54

Inserting (51) and (54) into (46):

M21R4

N, =
! Coy(WyNyyy - Myy) (55)

Inserting (55) into (49):

N3_ R4M21

Ny~ Ry(WyNy,, - Myy) (56)
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Fig. 24 Simplified energy-level diagrams illustrating the UC5 process.

dN,
dr CaoNaNo =W Nyy Ny - RN, (57)

dn,
“ar = WolNypiNo + MyoNoy = Walyp Ny - RN, (58)
dN,

——=CyyN,Ny,-M,,N,, - R, N,

gr ~ CaolNallo = Maalle = Hallzr 0

dN,

— =W, NN, -R;N

It )

dn,

—=W,N,,,N,-C,,N,N, - R,N

T 22~ Caotallo = Ralle )

To solve the rate equations in stationary conditions, (57)~(61) convert to:
CoNyNo=W Ny, N; =RN; =0 (62)

WoNyp Ny + MyoNy = W;Nyyp Ny = RN, =0 (63)



CaoNaNg = MpNy = RyNp =0 (64)

WiNyp N1 = R3N3 =0 (65)

WalNypiNa = CaoNalNo = RNy =0 (66)

Due to the radiative rate of R, and R, can be neglectable, then (62) become:
C4oN4No =W Ny N1 =0 (67)

According to (67),

_ WlNYblNl

PTGy (63)
According to (65),

N. = WINYblNl
=t
By (69)

According to (68) and (69),

C4ONO

)

2|w2
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Fig. 25 Simplified energy-level diagrams illustrating the UC6 process.

dN,
—— =W,Ny,oN, - W,Ny,,N, - RN

dt b'"'Yb0' " 4 1°'Ybh1''1 1 1(71)
dn,

— = =W_Ny,,Ny - W,Ny,,N, - R,N

dt 0°'Yp1''0 2°'Yp1'Y2 2 2(72)
dN,

— =W,Ny,,N, - RyN

dt 17'Ybh1''1 3 3(73)

dn,

— =W,Ny,,N, - W,Ny,oN, - R,N

dt 2°'Yp1'Y2 b''Yb0 ' 4 4774 (74)

To solve the rate equations in stationary conditions, (71)~(74) convert to:

WNyyoNy =W Ny Ny =RN; =0 (75)
WoNypiNg =W)Ny, Ny = R,N, =0 (76)

W Ny 1Ny =R3N3 =0 (77)



WoNyy Ny =W NyyoNy - RN, =0 (78)

Due to the radiative rate of R, and R, can be neglectable, then (75) become:
WyNypoNy = WiNyyNi =0 (79)

According to (79):

WlNYblNl
Ne=—
p*VYbo (80)

According to (77):
WlNYblNl
Ny=————
@D

According to (80) and (81):

WbNYbO

Rs (82)

N3
N,
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Fig. 26 Simplified energy-level diagrams illustrating the UC7 process.

dn,

“ar = WolNvpoNa+ Moy Ny = Ry Ny (83)

dn,

—=W,N,,N,-W,N,, N, -M, N, -R,N

ar otvao = Walyna = Mafa = Halle g4y
dN,

“ar = WilNypiNy + MysNy - RsN; (85)

dn,

W:WZNYblNZ_WbNYb0N4_M43N4_R4N4 (86)

To solve the rate equations in stationary conditions, (83)~(86) convert to:
WyNypoNy + MyNy = RNy =0 (87)
WoNyp No = W)Nyy Ny = My Ny = RN, =0 (88)

W Ny Ny +My3N,=R3N; =0 (89)



W)Nyp Ny = WiNypgNy = MysN, - RN, =0 (90)
According to (90):

N _ W;Nypy
Ny WyNyyo+Myz+R, (91)

38}

According to (87):

_ WbNYb0N4 " M21N2

Nl
R, Ry (92)
According to (89):
WlNYblNl M43N4
Ny = +

R, R, (93)
Inserting (92) into (93):

WlwaYbONYbl M4-3 WlNYb1M21N2
Ny=|—— "= N+ —— ==
R1R3 R3

Ry RiRs  (94)

According to (94):
N B (WlwaYbONYbl M43) WiNypMyN,
N, RR, R, R,R;N, 95)

Inserting (91) into (95):

N, 3 WiW,NypoNypr N My3; WMy (WpNypo + Mys + Ry)
N, R.R, R, R.R,W, (96)




Steady-state rate equations are established to quantitatively analyze the upconversion
process according to previous reports.'-* We denote as Ny, Ni, N,, Ny», N3, and Ny the
population densities of the *1;s,, *1132, 41112, *Lo2, *Fos, *S3/2/*Hy12/*F7), states of Er3*
ions, Nypo and Nyy,; the population densities of the *F;,, 2Fs, states of Yb*' ions,
respectively. Wy, Wy, W, represent the energy transfer rates form excited Yb** to Er**.
M, My, and M-, represent the multi-phonon relaxation rates from Er3* 41;;, — 113
and Er¥* 2H,/*S3, — 4Fgpp, and Er’* 4o, — 41y, respectively. Cyo, Cy1, Cyy represent
the cross relaxation rates between Er¥*. W, represent the back energy transfer rates from
excited Er** to Yb3'. Ry, Ry, Ry, R3 and R, represent the radiative rates of *I13, 4111,
o, *Fopn, 4S30/”Hy ), states of Er3*, respectively. The above UC3-UC6 rate equations
are established based on that more doping concentration of Yb3' than that of Er’'.
Hence, many radiative and nonradiative processes, such as N1, N2 radiative emissions,
back energy transfer from Er3* 4I;;,—%;s), transition to Yb** 2F;, — 2F5, transition
and so on, can be neglected.
The change rates of Ny, are:

dNyy,
dt = poypNypo = W NiNyp1 = RypiNypy 97)

where p is the excitation photon flux, which is linearly related to excitation power
densities, ayy, is the absorption cross-section of Yb**, Ry, represent the radiative rates
of °Fs, state of Yb>*. Under steady-state condition, Ny;; can be expressed as:

N = PoypNyho
ot YW N, + Ry

o« p
(98)

Therefore, according to the rate equations in UC1~UC7, and Eqn. (98), we
obtained the Table S1.



Table S1. R/G relationship of the upconversion process.

| |
Upconversion I R/G (N3/Ny) I Power
Mechanism dependent
[ [ R/G
1 1
|
-1
UCl1 I W1M21R4_ I (Cl.p + C)
I WyR3(Ry + W Ny,,) I
1 1
|
b 0
UC I M43 I P
A
| |
1 1
| |
ves | —RW, + CpyWoN, . JRAWS + 6C,W,R,W
2R, W 2R, W
| 32 3Wa | po
1 1
| |
uc4 I R4_M21 I (p - C) -1
I Ry(W3Nypy — Myy) I
1 1
| |
5 0
ve 1 CaolNg 1P
R
| |
1 1
| |
0
uce I WiNypo 1?
R
| 3 |
1 1
| |
uer 1 M3 N WMy (WyNypo + Myz + Ry
| B3 RyRW, Lapl+b

—



! WIWbNYbONYbl
I, RiR;
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