Electronic Supplementary Information

Side-Chain Engineering of Wide-Bandgap Polymers Based on Benzo[1,2-b:4,5b']dithiophene and [2,2'-bithiophene]-4,4'-Dicarboxylate for Fullerene-Free Organic Solar Cells

Qi Wang,^a Miaomiao Li,^{*a,b} Ying Sui,^a Zhongli Wang,^a Ziqi Liang^a and Yanhou Geng^{*a,b}

^aSchool of Materials Science and Engineering, Tianjin University, Tianjin 300072, P.R. China.

^bTianjin Key Laboratory of Molecular Optoelectronic Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China.

Instruments

¹H NMR and ¹³C NMR spectra were measured by a Bruker AV 400-MHz spectrometer in CDCl₃ or 1,1,2,2-C₂D₂Cl₄ using tetramethylsilane (TMS) as internal standard. Gas chromatography-mass spectra (GC-MS) were recorded on a Shimadzu/GCMS-QP2010 SE mass spectrometer. Matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectra were recorded on a Bruker/AutoflexIII Smartbean MALDI mass spectrometer with 2-[(2E)-3- (4-tertbuthylphenyl)-2-methylprop-2-enylidene]malononitrile (DCTB) as the matrix in a reflection mode. Elemental analysis was measured by a FlashEA1112 elemental analyzer. Gel permeation chromatography (GPC) analysis of polymers was conducted on a PL-GPC 220 system with monodisperse polystyrene as standard and 1,2,4trichlorobenzene as eluent at 150 °C. Thermogravimetric analysis (TGA) was conducted on Perkin-Elmer TGA-7 at a heating rate of 10 $^{\circ}\text{C/min}$ under N_2 and differential scanning calorimetry (DSC) was performed by a Perkin-Elmer DSC7 thermal analyzer with a heating/cooling rate of ±10 °C/min under N₂. UV-vis-NIR absorption spectra were obtained on a Shimadzu UV3600 Plus Spectrometer. Cyclic voltamogram (CV) measurements were carried out on a CHI660 electrochemical analyzer with a three-electrode cell at a scan rate of 100 mV/s. A glassy carbon electrode (diameter of 1 cm), a platinum wire and a saturated calomel electrode (SCE) were used as working electrode, counter electrode and reference electrode, respectively. Tetrabutylammonium hexafluorophosphate (NBu₄PF₆, 0.1M) in anhydrous acetonitrile was used as the supporting electrolyte. The potential was calibrated by ferrocene/ferrocenium (Fc/Fc⁺), and the HOMO/LUMO energy levels were estimated by the equations: $E_{\text{HOMO}} = -(4.80 + E_{onset}) \text{ eV}, E_{\text{LUMO}} = -(4.80 + E_{onset}) \text{ eV}$ E_{onset}^{re} eV, in which E_{onset}^{ox} and E_{onset}^{re} are oxidation and reduction onsets versus the half potential of Fc/Fc⁺, respectively. X-ray diffraction (XRD) was conducted on a Rigaku Smart Lab with CuK α source ($\lambda = 1.54056$ Å). Atomic force microscopy (AFM) images were recorded in tapping mode on a Bruker MutiMode 8 atomic force microscope.

Fabrication and characterization of PSC devices

PSC devices with a device architecture of glass/ITO/PEDOT:PSS (30 nm)/active layer /PDINO (10 nm)/Al (100 nm) were fabricated. ITO was cleaned ultrasonically with detergent, deionized water, acetone and isopropanol for 15 min, successively. The dried ITO was treated with UV-ozone for 25 min, and then solution of PEDOT:PSS (Baytron PVP Al 4083) was spin-coated on the surface. The ITO was dried by baking in an oven at 150 °C for 20 min. A chlorobenzene solution (total concentration: 18mg/mL) of donor:acceptor blend was subsequently spin-coated on the PEDOT:PSS layer to form a photosensitive layer (ca.~100 nm thick), followed with thermal annealing for 10 mins. The active layer thickness was measured using a Dektak150 profilometer. The PDINO in methanol solution was deposited on the active layer to give a interfacial layer. Aluminum top electrode (ca. 100 nm) was subsequently deposited on the PDINO layer under high vacuum ($< 1.5 \times 10^{-4}$ Pa). The effective area of each cell is 4 mm², as defined by masks for the solar cell devices. Keithley 2400 source meter was used to measure J-V curves under 100 mW cm⁻² AM 1.5G simulated solar light illumination provided by a Solar Simulator (SS-F5-3A, Enli Technology Co. Ltd) calibrated with a standard photovoltaic cell equipped with a KG5 filter in a glove box. EQE curves were detected on a solar cell spectral response measurement system (QE-R, Enli Technology Co. Ltd).

Fabrication and characterization of SCLC devices

Hole-only devices with a device architecture of glass/ITO/PEDOT:PSS (30 nm)/active layer or polymer film (~100 nm)/Au (100 nm) and electron-only devices with a device architecture of glass/ZnO (30 nm)/ active layer (~100 nm)/Al (100 nm) were fabricated. The devices were measured using Keithley 2400 source meter in a glove box under dark. The hole and electron mobilities were extracted by fitting the

current density-voltage curves using SCLC method. The J-V curves of the devices were plotted as $J^{0.5}$ versus V using equation:

$$J = \frac{9}{8}\varepsilon_0\varepsilon_r \mu \frac{V^2}{L^3}$$

where J is the current density, L is the film thickness of the active layer, μ is the hole or electron mobility, ε_r is the relative dielectric constant of the transport medium, ε_0 is the permittivity of free space (8.85×10⁻¹² F m⁻¹), $V (= V_{appl} - V_{bi})$ is the internal voltage in the device, where V_{appl} is the applied voltage to the device and V_{bi} is the built-in voltage due to the relative work function difference of the two electrodes.

Supplementary data

Fig. S1 Chemical structure of ITIC-Th.

Fig. S2 ¹H NMR spectrum of compound 2a.

Fig. S3 ¹³C NMR spectrum of compound 2a.

Fig. S4 ¹H NMR spectrum of compound 2b.

Fig. S5 ¹³C NMR spectrum of compound 2b.

Fig. S6 ¹H NMR spectrum of compound 2c.

Fig. S7 ¹³C NMR spectrum of compound 2c.

Fig. S8 ¹H NMR spectrum of compound 3a.

Fig. S9 ¹³C NMR spectrum of compound 3a.

Fig. S10 ¹H NMR spectrum of compound 3b.

Fig. S11 ¹³C NMR spectrum of compound 3b.

Fig. S12 ¹H NMR spectrum of compound 3c.

Fig. S13 13 C NMR spectrum of compound 3c.

Fig. S14 1 H NMR spectrum of compound 4.

Fig. S15 ¹³C NMR spectrum of compound 4.

Fig. S16 ¹H NMR spectrum of PBDTEH-M.

Fig. S17 ¹H NMR spectrum of PBDTEH-E.

Fig. S18 ¹H NMR spectrum of PBDTEH-H.

Fig. S19 ¹H NMR spectrum of PBDTO-E.

Fig. S20 ¹H NMR spectrum of PBDTO-H.

Fig. S21 ¹H NMR spectrum of PBDT-OD.

Fig. S22 TGA (a) and DSC (b) curves of the polymers.

Fig. S23 Thin film cyclic voltammograms (CV) of the polymers.

Fig. S24 In-plane (a) and out-of-plane (b) XRD patterns of the polymer neat films.

Fig. S25 *J-V* characteristics of hole-only devices based on the polymers. (a) for pristine films, (b) for films with thermal annealing at 150 $^{\circ}$ C for 10 min. Lines represent the fitting results using a model of single-carrier space-charge-limited current with field-independent mobility.

polymer	T _{anneal} (°C)	μ_{SCLC} (10 ⁻⁵ cm ² V ⁻¹ s ⁻¹)
DDDTFII M	Pristine	0.90±0.11 (1.04)
ΓΟΟΙΕΠ-ΝΙ	150	1.58±0.10 (1.75)
DDDTEIL E	Pristine	0.99±0.10 (1.10)
ΓΟυιεπ-ε	150	1.65±0.15 (1.82)
DDDTFH H	Pristine	0.79±0.10 (0.90)
ГВ ЛТЕН-Н	150	1.55±0.14 (1.70)
BBDTO H	Pristine	1.03±0.18 (1.29)
гылто-п	150	2.40±0.15 (2.61)
BBDT OD	Pristine	0.66±0.09 (0.79)
PRD1-OD	150	0.82±0.10 (0.98)

Table S1 Hole mobility of the polymer neat films measured by the space charge limited current (SCLC) method.

^a Optimal and statistical results are listed in parentheses and outside of parentheses, respectively. The average values are obtained from over 15 devices.

Fig. S26. Chemical structure of PDINO.

polymer	D/A ratio	$J_{\rm sc}$ (mA/cm ²)	$V_{\rm oc}$ (V)	FF(%)	PCE(%) ^c
	1:0.8	13.83	0.91	59%	7.19 (7.02)
PBDTEH-E ^a	1:1	13.18	0.92	60%	7.43 (7.17)
	1:1.2	13.33	0.91	58%	7.05 (6.78)
PBDTO-H ^b	1:0.8	12.92	0.93	59%	6.99 (6.70)
	1:1	14.82	0.94	59%	8.21 (8.02)
	1:1.2	13.93	0.91	60%	7.74 (7.41)

Table S2. Photovoltaic parameters of the PSC devices based on **PBDTEH-E**:ITIC-Th and **PBDTO-H**:ITIC-Th blend films with different D:A ratios (wt:wt).

^a The blend solution was spin-coated from chlorobenzene with 0.2% DIO, and the blend film was annealed at 150 $^{\circ}$ C for 10 min.

^b The blend solution was spin-coated from chlorobenzene with 0.2% DIO, and the blend film was annealed at 100 °C for 10 min.

^c Optimal and statistical results are listed outside of parentheses and in parentheses, respectively. The average values are obtained from over 15 devices.

polymer	thickness (nm)	$J_{ m sc}$ (mA/cm ²)	$V_{ m oc}\left({ m V} ight)$	FF(%)	PCE(%) ^c
	80	10.31	0.91	53%	5.00 (4.75)
PBDTEH-E ^a	100	13.18	0.92	60%	7.43 (7.17)
	120	14.13	0.89	52%	6.50 (6.28)
PBDTO-H ^b	80	13.25	0.93	53%	6.57 (6.31)
	100	14.82	0.94	59%	8.21 (8.02)
	120	14.69	0.94	56%	7.72 (7.33)

Table S3. Photovoltaic parameters of the PSC devices based on **PBDTEH-E**:ITIC-Th and **PBDTO-H**:ITIC-Th blend films with different active layer thicknesses.

^a The blend solution was spin-coated from chlorobenzene with 0.2% DIO, and the blend film was annealed at 150 $^{\circ}$ C for 10 min.

^b The blend solution was spin-coated from chlorobenzene with 0.2% DIO, and the blend film was annealed at 100 °C for 10 min.

^c Optimal and statistical results are listed outside of parentheses and in parentheses, respectively. The average values are obtained from over 15 devices.

polymer	DIO (vol%)	Annealig temp.(°C)	$J_{ m sc}$ (mA/cm ²)	$V_{\rm oc}$ (V)	FF(%)	PCE(%) ^a
PBDTEH-M	0	No	10.53	0.90	39%	3.75 (3.52)
	0	100	12.28	0.90	39%	4.32 (4.08)
	0	150	14.03	0.88	50%	6.16 (5.99)
	0	180	13.34	0.83	52%	5.80 (5.61)
	0.5	No	11.00	0.94	35%	3.65 (3.32)
	0.5	100	13.01	0.94	57%	6.96 (6.70)
PBDTEH-E	0.5	120	13.60	0.94	56%	7.18 (7.01)
	0.5	150	13.18	0.92	60%	7.43 (7.17)
	0.5	180	10.21	0.89	56%	5.14 (4.82)
	0.5	No	11.65	1.00	30%	3.31 (3.50)
PBDTEH-H	0.5	100	14.37	0.99	44%	6.20 (6.09)
	0.5	120	14.55	0.97	40%	5.35 (5.66)
	0.5	No	11.18	0.96	39%	4.17 (3.88)
	0.5	80	12.55	0.95	45%	5.36 (5.09)
PBDTO-H	0.5	100	14.82	0.94	59%	8.21 (8.02)
	0.5	120	14.66	0.94	53%	7.30 (7.05)
	0.5	150	12.67	0.93	60%	7.02 (6.75)
PBDT-OD	0	No	4.22	1.05	43%	1.88 (1.60)
	0	100	8.94	1.04	43%	4.03 (3.72)
	0	150	8.89	1.02	37%	3.40 (3.09)

Table S4. Photovoltaic parameters of PSC devices based on the polymer:ITIC-Th blend films with thermal annealing at different temperatures.

^a Optimal and statistical results are listed outside of parentheses and in parentheses, respectively. The average values are obtained from over 15 devices.

polymer	DIO (vol%)	Annealig temp.(°C)	$J_{ m sc}$ (mA/cm ²)	$V_{ m oc}\left({ m V} ight)$	FF(%)	PCE(%) ^a
PBDTEH-M	0	150	14.03	0.88	50%	6.16 (6.05)
	0.5	150	13.49	0.83	42%	4.67 (4.33)
	0	150	12.10	0.93	35%	3.89 (3.51)
	0.2	150	13.08	0.94	57%	6.99 (6.72)
PBDTEH-E	0.5	150	13.18	0.94	60%	7.43 (7.08)
	0.8	150	11.42	0.94	65%	6.90 (6.69)
	1	150	12.20	0.94	47%	5.36 (5.08)
	0	100	11.18	0.96	39%	4.17 (3.94)
DDDTA II	0.2	100	11.56	0.94	57%	6.10 (5.81)
РВДТО-Н	0.5	100	14.82	0.94	59%	8.21 (8.02)
	0.8	100	14.92	0.94	54%	7.60 (7.25)
PBDTEH-H	0	100	10.99	1.01	32%	3.26 (3.55)
	0.5	100	14.37	0.99	44%	6.20 (6.09)
	1	100	13.00	0.97	35%	4.17 (4.41)
PBDT-OD	0	100	8.94	1.04	43%	4.03 (3.78)
	0.5	100	6.09	1.04	46%	2.90 (2.68)

Table S5. Photovoltaic parameters of the PSC devices based on polymer:ITIC-Th blend films with different concentrations of DIO additive.

^a Optimal and statistical results are listed outside of parentheses and in parentheses, respectively. The average values are obtained from over 15 devices.

Fig. S27 *J-V* characteristics of hole-only (a, b) and electron-only (c, d) devices based on the polymer:ITIC-Th blend films: (a, c) for pristine blend films, (b, d) for blend films under optimized condition. Lines represent the fitting results using a model of single-carrier space-charge-limited current with field-independent mobility.

polymer	condition	$\frac{\mu_{h}}{(10^{-5} \text{ cm}^{2} \text{ V}^{-1} \text{ s}^{-1})^{a}}$	$\frac{\mu_{e}}{(10^{-5} \text{ cm}^{2} \text{ V}^{-1} \text{ s}^{-1})^{a}}$	$\mu_{h}^{\prime}/\mu_{e}^{\prime}$
PBDTEH-M	as cast	1.20±0.33 (1.56)	0.23±0.02 (0.26)	5.21
	TA ^b	9.32±0.11 (9.49)	1.83±0.20 (2.11)	5.09
PBDTEH-E	as cast	3.15±0.13 (3.38)	0.86±0.14 (1.01)	3.66
	DIO c/TA b	8.45±0.35 (8.87)	2.43±0.18 (2.62)	3.48
PBDTEH-H	as cast	2.50±0.23 (2.82)	0.56±0.08 (0.67)	4.21
	DIO °/TA $^{\rm d}$	7.15±0.22 (7.55)	1.67± 0.18 (1.90)	3.97
PBDTO-H	as cast	6.32±0.28 (6.65)	1.33±0.08 (1.42)	4.75
	DIO °/TA d	11.90±0.87 (13.00)	3.60±0.15 (3.80)	3.30
PBDT-OD	as cast	1.05±0.14 (1.28)	0.18±0.03 (0.21)	5.83
	TA ^d	3.75± 0.25 (4.05)	1.03±0.17 (1.23)	3.64

Table S6. Carrier mobility of the polymer:ITIC-Th blend films measured by SCLC method.

^a Optimal and statistical results are listed in parentheses and outside of parentheses, respectively. The average values are obtained from over 15 devices. ^b The thermal annealing temperature is 150 °C. ^c The DIO concentration is 0.5% (vol%). ^d The thermal annealing temperature is 100 °C

Fig. S28 AFM height (a-e) and phase (f-j) images of the polymer:ITIC-Th blend films without any post treatment.

Fig. S29 In-plane and out-of-plane XRD patterns of ITIC-Th neat film with thermal annealing at 150 °C for 10 min.