Supporting Information

TBAB additive for inorganic $CsPbI_{2.4}Br_{0.6}$ perovskite solar cells with efficiency beyond 15%

Xue Jia, ^{*ab} *Ling Liu*^{ab} and *Zhimin Fang*^a

- a. X. Jia, L. Liu, Z. Fang Center for Excellence in Nanoscience (CAS), Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China E-mail: jiax@nanoctr.cn
- b. X. Jia, L. Liu University of Chinese Academy of Sciences, Beijing 100049, China

Experimental section

1. Materials and precursor solution preparation

SnO₂-colloid precursor (tin(IV) oxide, 15% in H₂O colloidal dispersion), N,Ndimethylformamide (DMF, 99.8%), dimethyl sulfoxide (DMSO, >99.8%), Chlorobenzene (CB, 99.9%), Molybdenum(VI) oxide (MoO₃, 99.998%) and silver (Ag, 99.99%) were purchased from Alfa Aesar. Zinc acetate dihydrate (>99%), ethanolamine (99.5%), cesium iodide (CsI, 99.999%) and lead bromide (PbBr₂, 99.999%) were purchased from Sigma-Aldrich. Lead iodide (PbI₂, 99.99%) and 2-methoxyethanol (>99.0%) were purchased from TCI. Tetrabutylammonium bromide (TBAB, >99%) was purchased from Acros. Poly[bis(4phenyl)(2,4,6-trimethylphenyl)amine] (PTAA) was purchased from Xi'an Polymer Light Technology Corp. Unless otherwise stated, all solvents and chemicals were used without further purification.

2. Precursor solution preparation

The ZnO precursor solution was prepared according to literature [1].

The CsPbI_{2,4}Br_{0.6} precursor solution (0.8 M) was prepared by dissolving CsI (0.8 M), PbI₂ (0.56 M) and PbBr₂ (0.24 M) in a mixture of DMF and DMSO (v/v 4:1), then, was stirred at 60 °C overnight in a N₂ glovebox.

A certain amount of TBAB was dissolved in DMF and stirred for 2 h at room temperature. The CsPbI_{2.4}Br_{0.6} -TBAB precursor solution was prepared by adding TBAB DMF solution to the above CsPbI_{2.4}Br_{0.6} precursor solution, and stirred for 2 h.

The PTAA solution was prepared by dissolving PTAA (10 mg) in 1 mL of CB solution.

The $PC_{61}BM$ solution was prepared by dissolving $PC_{61}BM$ (15 mg) in 1 mL of CB solution.

3. Device fabrication

Perovskite solar cells

fabricated Perovskite solar cells were with the structure of ITO/SnO₂/ZnO/PVSK/PTAA/MoO₃/Ag. Patterned ITO substrates with a sheet resistance of 15 Ω sq⁻¹ were ultrasonically cleaned by using detergent, deionized water, acetone, isopropanol sequentially, and then treated with UV-ozone for 10min. A thin layer of SnO₂ nanoparticle film was obtained by annealing the substrates at 150 °C for 30 min after spincoated at 3000 rpm for 30s. Then, the ZnO precursor solution was spin-coated onto substrates (4000 rpm for 30 s). The films were annealed at 200 °C in the air for 20 min. Next, the different perovskite precursor solutions were spin-coated onto ITO/SnO₂/ZnO substrates at 2000 rpm for 40s, respectively. Subsequently, the films were annealed at 320 °C for 10 min. PTAA layer was formed by spin-coating the related precursor onto the perovskite film. Finally, MoO₃ (~6 nm) and Ag (~80 nm) was successively evaporated onto the substrates through a shadow mask (pressure ca. 10^{-4} Pa). The active area for the device is 0.04 cm².

Electron-only devices

The structure for electron-only devices is ITO/SnO₂/ZnO/perovskite/PC₆₁BM/Ag. SnO₂, ZnO, and perovskite layer were successively spin-coated onto the ITO substrates. The processes are just the same as those of PSCs fabrication. PC₆₁BM layer was formed by spin-coating the related precursor onto the perovskite film (4000 rpm for 30 s). Finally, Ag (~80 nm) was evaporated onto the substrates through a shadow mask (pressure ca. 10^{-4} Pa). *J-V* curves were measured by using a computerized Keithley 2400 SourceMeter in the dark.

4. Characterization

Absorption spectra were measured with a Shimadzu UV-1800 spectrophotometer. Photoluminescence (PL) spectra were recorded on NanoLOG-TCSPC. The 410 nm light was applied as the photon excitation light. X-ray diffraction (XRD) patterns were obtained on D/MAX-TTRIII (CBO) with Cu K α radiation ($\lambda = 1.542$ Å) operating at 40 kV and 200 mA. Scanning electron microscopy (SEM) was performed on a Hitachi SU8220. The grain size was estimated using Nano Measure software. *J-V* curves were measured by using a computerized Keithley 2400 SourceMeter and a Xenon-lamp-based solar simulator (Enli Tech, AM 1.5G, 100 mW cm⁻²). The illumination intensity of solar simulator was determined by using a monocrystalline silicon solar cell (Enli SRC2020, 2cm×2cm) calibrated by NIM. The devices were measured in reverse scan (1.3 to -0.20 V, step 0.02 V).The external quantum efficiency (EQE) spectra were measured by using a QE-R3011 measurement system (Enli Tech).

References

[1] Sun Y, Seo JH, Takacs CJ et al. Inverted polymer solar cells integrated with a lowtemperature-annealed sol-gel-derived ZnO film as an electron transport layer. Adv Mater 2011; 23:1679-1683.

Fig. S1 EDS pattern for the CsPbI_{2.4}Br_{0.6}-TBAB film.

Table S1 The element contents for the $CsPbI_{2,4}Br_{0,6}$ -TBAB film.

Fig. S2 Tauc plots of $CsPbI_{2,4}Br_{0.6}$ and $CsPbI_{2,4}Br_{0.6}$ - TBAB films possessing a direct bandgap.

1.8

hv(eV)

1.7

1.6

E_g= 1.83 eV

2.0

1.9

Fig. S3 PL spectra for glass/SnO₂/ZnO/CsPbI_{2.4}Br_{0.6} and glass/SnO₂/ZnO/CsPbI_{2.4}Br_{0.6} - TBAB.

Fig. S4 FWHM of the (100) and (200) peak for $CsPbI_{2.4}Br_{0.6}$ and $CsPbI_{2.4}Br_{0.6}$ - TBAB films.

Fig. S5 SEM images for $CsPbI_{2,4}Br_{0.6}$ and $CsPbI_{2,4}Br_{0.6}$ - TBAB films on glass/ITO/SnO₂/ZnO substrates.

Fig. S6 $J^{1/2}$ -*V* plots for the electron-only devices (in dark).

Fig. S7 Structure of perovskite solar cells.

Fig. S8 *J-V* curves for CsPbI_{2.4}Br_{0.6} solar cells made with different additive concentrations (annealing temperature 320 °C, annealing time 10 min).

Fig. S9 *J-V* curves for CsPbI_{2.4}Br_{0.6} solar cells with different annealing temperature $(30 \mu l/mL TBAB$, annealing time 10 min).

Fig. S10 *J-V* curves for CsPbI_{2.4}Br_{0.6} solar cells with different annealing time (30 μ l/mL TBAB, annealing temperature 320 °C).

TBAB	V _{oc}	$J_{ m sc}$	FF	РСЕ
[µL/mL]	[V]	[mA cm ⁻²]	[%]	[%]
0	1.20	16.16	70.94	13.75 (13.60) ^b
15	1.19	17.48	69.00	14.41 (14.22)
30	1.20	17.50	72.75	15.21 (15.05)
45	1.19	17.25	70.71	14.51 (14.35)
60	1.17	17.52	67.79	13.92 (13.62)
120	1.15	16.39	70.33	13.31 (12.97)

Table S2 Effect of TBAB content in precursor solution on performance of $CsPbI_{2.4}Br_{0.6}$ solar cells.^{*a*}

^{*a*}Annealing at 320 °C for 10 min;

^bData in parentheses stand for the average PCEs for 10 cells.

Table S3 Effect of annealing temperature for $CsPbI_{2.4}Br_{0.6}$ layer on performance of $CsPbI_{2.4}Br_{0.6}$ solar cells.^a

Annealing	V	T	EE	DOE
temperature	V _{oc}		FF [0/]	PCE
[°C]		[mA cm ⁻²]	[%]	[%]
280	1.15	14.08	69.00	11.20 (10.71) ^b
300	1.20	17.43	69.28	14.45 (14.08)
320	1.20	17.50	72.75	15.21 (15.05)
350	1.20	16.31	66.90	13.11 (12.96)

 $^{a}30 \ \mu L/mL$ TBAB in precursor solution; annealing for 10 min.

^bData in parentheses stand for the average PCEs for 10 cells.

Annealing time	V _{oc}	$J_{ m sc}$	FF	PCE
[min]	[V]	[mA cm ⁻²]	[%]	[%]
0	1.11	16.19	72.18	12.99 (12.78) ^b
5	1.20	17.49	68.51	14.38 (14.05)
10	1.20	17.50	72.75	15.21 (15.05)
20	1.19	16.99	71.16	14.37 (14.08)
30	1.16	16.57	71.24	13.69 (13.43)
60	1.10	16.18	72.40	12.92 (12.77)

Table S4 Effect of annealing time for $CsPbI_{2,4}Br_{0,6}$ layer on performance of $CsPbI_{2,4}Br_{0,6}$ solar cells.^{*a*}

^{*a*}30 µL/mL TBAB in precursor solution; annealing at 320 °C.

^bData in parentheses stand for the average PCEs for 10 cells.

Table S5 A summary of the detail performance parameters of reported inorganic perovskite(PVSK) solar cells.

Perovskite (PVSK)	Device structure	<i>V</i> _{oc} [V]	$J_{\rm sc}$ [mA cm ⁻²]	FF [%]	PCE [%]	Ref.
CsPbI ₃	FTO/TiO ₂ /PVSK/Spiro- OMeTAD/Ag	0.66	11.92	52.47	4.13	J. Phys. Chem. Lett. 2016, 7, 3603
CsPbI ₃	FTO/TiO ₂ /PVSK/P3HT/Mo O ₃ /Au	0.74	10.48	61	4.68	Sol. Energy Mater. Sol. Cells 2016, 144, 532
CsPbI ₃	ITO/TiO ₂ /PVSK/P3HT/Au	1.06	13.8	67.7	10.5	J. Phys. Chem. Lett. 2017, 8, 67
CsPbI ₃	FTO/TiO ₂ /PVSK/Spiro- OMeTAD/Au	1.11	14.88	65	10.74	Nat. Commun. 2018, 9, 1076
CsPbI ₃	FTO/TiO ₂ /PVSK/Spiro- OMeTAD/MoO ₃ /Al	1.23	13.47	65	10.77	Science 2016, 354, 92

CsPbI ₂	FTO/TiO ₂ /PVSK/P3HT/Au	1.04	16.53	65.7	11.3	J. Am. Chem. Soc. 2018, 140.
						11716
	ITO/PTAA/PVSK/PCBM/C ₆					Joule 2017, 1,
CsPbI ₃	₀ /BCP/Cathode	1.08	14.9	70	11.4	371
	FTO/TiO ₂ /PVSK/Spiro-					Sci. Adv. 2017,
CsPbI ₃	OMeTAD/Ag	1.15	14.53	71	11.86	3, e1700841
	ITO/SnO ₂ /PVSK/Spiro-	1.07	16 50		10.4	Joule 2018, 2,
CsPbI ₃	OMeTAD/Au	1.07	16.59	/0	12.4	1356
C-DI-I	FTO/TiO ₂ /PVSK/PTB7/Mo	1.07	12 20		12.55	Joule 2018, 2,
CSPDI ₃	O ₃ /Ag	1.27	12.39	80	12.55	2450
CaDhi	FTO/TiO ₂ /PVSK/Spiro-	1.20	1427	70	12.4	Sci. Adv. 2017,
CSPDI ₃	OMeTAD/MoOx/Al	1.20	14.37	/8	13.4	3, eaao4204
CaDhi		1.06	19.05	74.0	15.07	Nat. Commun.
CSPDI ₃	$F 10/110_2/P \vee SK/P 1AA/Au$	1.00	18.95	/4.9	15.07	2018, 9, 4544
CaDhi	ITO/SnO ₂ /PVSK/Spiro-	1.09	10 /1	70.22	15 71	Nat. Commun.
CSP013	OMeTAD/Au	1.08	10.41	19.52	13.71	2018, 9, 2225
	ETO/TiO /DVSV/Spiro					J. Am. Chem.
CsPbI ₃	OMeTAD/Ag	1.1	19.15	80.6	17.06	Soc. 2018, 140,
						12345
	FTO/NiMgLiO/PVSK/PCB M/BCP/Ag	0.98	14.18	66	9.14	Materials Today
CsPbI ₂ Br						Energy 2018, 8,
						125
	ETO/TiO /DVSV/Spiro					Adv. Energy
CsPbI ₂ Br	$\Gamma 10/110_2/\Gamma V SK/Spilo-$	1.11	11.89	75	9.84	Mater. 2016, 6,
	Owie TAD/Ag					1502458
						J. Phys. Chem.
CsPbI ₂ Br	ITO/SnO ₂ /PVSK/Carbon	1.19	12.91	66.1	10.13	Lett. 2019, 10,
						194
	ITO/NiO /PVSK/C co/BCP/A					Adv. Energy
CsPbI ₂ Br	σ	1.05	12.6	78.7	10.4	Mater. 2018,
	5					1800758
	FTO/TiO ₂ /PVSK/Spiro-					J. Phys. Chem.
CsPbI ₂ Br	OMeTAD/Au	1.23	12	73	10.7	Lett. 2017, 8,
						2936
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/Spiro-					Adv. Energy
	ΟΜεΤΑΟ/Ασ	1.17	13.98	74	12	Mater. 2018, 8,
						1801050
						Adv. Energy
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/PTAA/Au	1.19	12.93	80.5	12.39	Mater. 2018, 8,
						1703246
CsPhI_Rr	ITO/SnO ₂ /PVSK/Spiro-	1.06	15 99	77 12	13 09	ACS Photonics
CSP0I ₂ Br	OMeTAD/Ag		13.99	11.12	13.09	2018, 5, 4104

CsPbI ₂ Br	FTO/NiO _x /PVSK/ZnO@C ₆₀ / Ag	1.14	15.2	77	13.3	J. Am. Chem. Soc. 2018, 140, 3825
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/Spiro- OMeTAD/Au	1.18	14.89	77.23	13.54	Adv. Sci. 2018, 5, 1801117
CsPbI ₂ Br	FTO/NiO _x /PVSK/ZnO@C ₆₀ / Ag	1.14	15.7	77	13.74	Adv. Energy Mater. 2018, 9, 1803572
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/FA ⁺ CsPbX ₃ /FA ⁺ QDs/PTAA/Au	1.22	14.51	79.6	14.12	Adv. Sci. 2018, 5, 1801123
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/CsPbI ₃ QDs/PTAA/Au	1.2	15.25	78.7	14.45	Joule 2018, 2, 1500
CsPbI ₂ Br	ITO/SnO ₂ /ZnO/PVSK/Spiro- OMeTAD/MoO ₃ /Ag	1.23	15	78.8	14.6	Adv. Mater. 2018, 30, 1802509
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/Spiro- OMeTAD/Au	1.22	15.33	78.7	14.78	Adv. Funct. Mater. 2018, 28, 1803269
CsPbI ₂ Br	FTO/TiO ₂ /PVSK/FA ⁺ CsPbX ₃ /FA ⁺ QDs/PTAA/Au	1.22	15.1	80.3	14.81	Nano Energy 2018, 52, 408
CsPbI ₂ Br	FTO/c-TiO ₂ /PVSK/Spiro- OMeTAD/Au	1.23	16.79	77.81	16.07	Joule 2018, 3, 191
CsPbI ₂ Br	ITO/SnO ₂ /PN4N/CsPbI ₂ Br/P DCBT/MoO ₃ /Ag	1.30	15.3	81.5	16.2	Adv. Mater. 2019, 1901152
CsPbI _{1.2} Br _{1.8}	FTO/TiO ₂ /PVSK/PTAA/Au	1.33	9.7	64	8.2	Adv. Energy Mater. 2018, 8, 1802060
CsPbI _{1.5} Br _{1.5}	FTO/TiO ₂ /PVSK/PTAA/Au	1.28	11	65	9.1	Adv. Energy Mater. 2018, 8, 1802060
CsPbI _{1.8} Br _{1.2}	FTO/TiO ₂ /PVSK/PTAA/Au	1.29	12.3	65	10.3	Adv. Energy Mater. 2018, 8, 1802060
CsPbIBr ₂	FTO/TiO ₂ /PVSK/Au	0.96	8.7	56	4.7	Adv. Energy Mater. 2016, 6, 1502202
CsPbIBr ₂	FTO/NiO _x /PVSK/ZnO/Al	1.01	8.65	63.6	5.57	Nat. Mater. 2018, 17, 261
CsPbIBr ₂	FTO/TiO ₂ /PVSK/Carbon	0.96	12.15	53	6.14	Adv. Energy Mater. 2018, 8, 1800504

CsPbIBr ₂	FTO/c-TiO ₂ /PVSK/Carbon	1.14	9.11	63	6.55	ACS Appl. Energy Mater.
CsPbIBr ₂	ITO/SnO ₂ /PVSK/Carbon	1.23	8.5	67	7	J. Mater. Chem. A,2019, 7, 1227
CsPbIBr ₂	ITO/SnO ₂ /C ₆₀ /PVSK/Spiro- OMeTAD/Au	1.18	8.32	74.8	7.34	Adv. Energy Mater. 2018, 8, 1800525
CsPbIBr ₂	FTO/TiO ₂ /PVSK/Carbon	1.08	12.32	62	8.25	J. Am. Chem. Soc. 2017, 139, 14009
CsPbIBr ₂	FTO/c-TiO ₂ /PVSK/Carbon	1.25	10.66	69	9.16	Adv. Energy Mater. 2018, 8, 1802080
CsPbBr ₃	FTO/TiO ₂ /PVSK/Carbon	1.29	5.7	68	5	ACS Appl. Mater. Interfaces 2016, 8, 33649
CsPbBr ₃	FTO/TiO ₂ /PVSK/Spiro- OMeTAD/Au	1.5	5.6	62	5.4	Nat. Energy 2016, 2, 16194
CsPbBr ₃	FTO/TiO ₂ /PVSK/PTAA/Au	1.25	6.7	73	6.2	J. Phys. Chem. Lett. 2016, 7, 167
CsPbBr ₃	FTO/TiO ₂ /PVSK/Carbon	1.24	7.4	73	6.7	J. Am. Chem. Soc. 2016, 138, 15829
CsPbBr ₃	FTO/ZnO/PVSK/Spiro- OMeTAD/Au	1.43	6.17	77.2	6.81	ACS Appl. Mater. Interfaces 2018, 10, 7145
CsPbBr ₃	ITO/ZnO/PVSK/Spiro- OMeTAD/Au	1.44	7.01	77.11	7.78	Adv. Mater. 2018, 30, 1800855
CsPbBr ₃	FTO/TiO ₂ /CQD/PVSK/Spiro -OMeTAD/Ag	1.06	11.34	69	8.29	Adv. Mater. 2017, 29, 1703682
CsPbBr ₃	FTO/TiO ₂ /PVSK/Carbon	1.52	7.35	84.3	9.43	Angew.Chem.In t. Ed. 2018, 57,5746
CsPbBr ₃	FTO/TiO ₂ /PVSK/Carbon	1.46	8.12	82.1	9.72	Angew. Chem. Int. Ed. 2018, 57, 3787

CsPb _{0.97} Sm _{0.} ₀₃ Br ₃	FTO/c-TiO ₂ /m- TiO ₂ /PVSK/carbon	1.59	7.48	85.1	10.14	Adv. Energy Mater. 2018, 8, 1802346
CsPb _{0.97} Tb _{0.} ₀₃ Br ₃	FTO/c-TiO ₂ /m- TiO ₂ /PVSK/SnS:ZnS/NiO _x /c arbon	1.57	8.21	79.6	10.26	J. Mater. Chem. A,2018, 6, 24324
CsPbBr ₃	FTO/SQE36/CsPbBr ₃ /CsSn Br ₃ /carbon	1.61	7.8	84.4	10.6	Sol. RRL 2019, 3, 1800284
CsPbI _{2.4} Br _{0.6}	ITO/SnO ₂ /ZnO/PVSK/PTA A/MoO ₃ /Ag	1.20	17.50	72.75	15.21	this work

Fig. S11 The normalized (a) PCE, (b) V_{oc} , (c) J_{sc} , and (d) FF for CsPbI_{2.4}Br_{0.6} and CsPbI_{2.4}Br_{0.6} - TBAB based PSCs as a function of storage time in a N₂ glovebox.

Fig. S12 TPV and TPC for CsPbI_{2.4}Br_{0.6} and CsPbI_{2.4}Br_{0.6} - TBAB based PSCs.