Supplementary Information for

Observation of Superconductivity in Pressurized 2M WSe₂ Crystals

Yuqiang Fang, Qing Dong, Jie Pan, Hanyu Liu, Pan Liu, Yiyang Sun, Quanjun L, Wei Zhao, Bingbing Liu, Fuqiang Huang

¹State Key Laboratory of High Performance Ceramics and Super fine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China

²University of Chinese Academy of Sciences, Beijing 100049, China

³State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China

⁴State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering Shanghai Jiao Tong University, Shanghai 200240, China

⁵Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong, P.R. China State ⁶Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China

List of contents:

- 1. Materials and methods
 - (1) Preparation of 2M WSe₂
 - (2) Single crystal determination of 2M WSe₂
 - (3) Raman measurements
 - (4) High-pressure measurements
- 2. Supplementary figures and tables

1. Materials and methods

(1) Synthesis of 2M WSe₂ crystals

We took a topochemical method to prepare the 2M WSe₂ crystals. Firstly, the precursor K_xWSe_2 crystals were synthesized by the reaction of potassium and WSe₂ powder at 800 °C for two days. Then the products were soaked in distilled water to dissolve the impurities. Finally, the $K_x(H_2O)WSe_2$ crystals were stirred in the 2 mmol/L acidic $K_2Cr_2O_7$ solution for 0.5 h to deintercalate K⁺ ions. The prepared 2M WSe₂ crystals were washed by distilled water for some times and dried under vacuum.

(2) Single crystal determination

Suitable crystals were chosen to perform the data collections. Single-crystal X-ray diffraction was performed on a Bruker D8 QUEST diffractometer equipped with Mo K α radiation ($\lambda = 0.71073$ Å). The diffraction data were collected at room temperature by the ω - and φ -scan methods. The crystal structures were solved and refined using APEX3 program. Absorption corrections were performed using the multi-scan method (SADABS).

(3) Raman measurements

Raman spectra were measured using a Renishaw inVia Qontor confocal Raman microscope at excitation wavelength of 633 nm. To avoid the phase transition, the exciting laser cannot be strong and the parameter of the ND filter is set as 10%.

(4) High-pressure measurements

Electrical transport measurements were carried out using standard four-point probe method in a homemade multifunctional measurement system (2.6-300 K, JANIS Research Company Inc.; 0-9 T, Cryomagnetics Inc.). In situ high pressure angledispersive synchrotron XRD experiment was performed at 4W2 beamline of Beijing Synchrotron Radiation Facility (BSRF) ($\lambda = 0.6199$ Å). All high pressure measurements were conducted by diamond-anvil cell (DAC) and rhenium as gasket material. DAC made of non-magnetic Cu-Be alloy was used in the upper critical magnetic field measurement. A 4 : 1 methanol–ethanol mixture was adopted as pressure transmitting medium in XRD performance, while there was no pressure transmitting medium in resistance measurements. The R₁ fluorescence line of ruby was used to calibrate pressures in lower ranges; the Raman spectrum of diamond was employed as pressure calibrant at higher region.

2. Supplementary tables and figures

formula	WSe ₂
F _w (g mol ⁻¹)	341.76
crystal system	Monoclinic
space group	<i>C</i> 2/m
<i>a</i> (Å)	13.838(3)
<i>b</i> (Å)	3.291(7)
<i>c</i> (Å)	5.912(1)
α (°)	90
$eta(^{\circ})$	111.468(6)
$\gamma(^{\circ})$	90
$V(Å^3)$	250.55(9)
Ζ	1
$\rho_{\rm c} ({\rm g} \cdot {\rm cm}^{-3})$	9.059
$\mu (\mathrm{mm}^{-1})$	74.75
λ (Mo K α) (Å)	0.71073
<i>T</i> (K)	298
<i>F</i> (000)	568
θ_{\max} (°) / completeness (%)	25.0 / 97.4
R _{int}	0.041
$R_1^{a}[F^2 > 2\sigma(F^2)]$	0.030
$wR_2^{b}(F^2)$	0.095
goodness of fit	0.85
largest diff. peak and hole (e/Å ³)	2.14 and -1.09
$\overline{{}^{a}R_{1} = \sum F_{o} - F_{c} / \sum F_{o} }$. $bwR_{2} = \{\sum w(F_{c}) / \sum F_{o} - F_{c} / \sum F_{o} / \sum $	$(F_{o}^{2} - F_{c}^{2})^{2}]/\sum [w(F_{o}^{2})^{2}]^{1/2}, w = 1/[\sigma^{2}(F_{o}^{2}) + \sigma^{2}(F_{o}^{2})]^{1/2}$
$(0.1000P)^2$] where $P = (F_0^2 + 2F_c^2)/3$.	

Table S1. Crystal Data and Structural Refinement statistics for 2M WSe₂.

Table S2. Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²) for 2M WSe₂.

atom	x	У	Z	$U_{\rm iso}$ */ $U_{\rm eq}$
W	0.25685 (5)	1/2	0.19725 (10)	0.0296 (4)
Se1	0.14190 (13)	0	0.3296 (3)	0.0305 (6)
Se2	0.39518 (13)	0	0.2055 (3)	0.0317 (5)

Table S3. Atomie	c displacement	parameters	(Ų)	for	WSe ₂
------------------	----------------	------------	-----	-----	------------------

able S3. Atomic displacement parameters (Å ²) for WSe ₂ .						
	U ₁₁	U ₂₂	U ₃₃	U_{12}	U ₁₃	U_{23}
W	0.0379 (6)	0.0319 (6)	0.0204 (6)	0	0.0124 (4)	0
Se1	0.0359 (10)	0.0342 (10)	0.0227 (10)	0	0.0124 (7)	0
Se2	0.0386 (10)	0.0335 (11)	0.0245 (10)	0	0.0134 (7)	0

Bond distance (Å)		Bond distance (Å)			
W—Se2 ⁱ	2.5112 (13)	W—W ⁱⁱ	2.8034 (10)		
W—Se2	2.5112 (13)	$W - W^{iv}$	2.8034 (10)		
W—Se2 ⁱⁱ	2.5353 (18)	Se1—W ^v	2.6002 (13)		
W—Sel ⁱ	2.6002 (13)	Se1—W ⁱⁱⁱ	2.6302 (17)		
W—Se1	2.6003 (13)	Se2—W ^v	2.5112 (13)		
W—Se1 ⁱⁱⁱ	2.6301 (17)	Se2—W ⁱⁱ	2.5353 (18)		
bond ang	le (°)	bond angle (°)			
Se2 ⁱ —W—Se2	81.88 (5)	Se2 ⁱⁱ —W—W ⁱⁱ	55.85 (3)		
Se2 ⁱ —W—Se2 ⁱⁱ	112.51 (5)	Se1 ⁱ —W—W ⁱⁱ	139.40 (6)		
Se2—W—Se2 ⁱⁱ	112.51 (5)	Se1—W—W ⁱⁱ	90.94 (4)		
Se2 ⁱ —W—Se1 ⁱ	97.20 (4)	Se1 ⁱⁱⁱ —W—W ⁱⁱ	137.07 (3)		
Se2—W—Se1 ⁱ	162.70 (7)	Se2 ⁱ —W—W ^{iv}	56.66 (4)		
Se2 ⁱⁱ —W—Se1 ⁱ	83.91 (6)	Se2—W—W ^{iv}	102.69 (4)		
Se2 ⁱ —W—Se1	162.70 (7)	Se2 ⁱⁱ —W—W ^{iv}	55.85 (3)		
Se2—W—Se1	97.20 (4)	Se1 ⁱ —W—W ^{iv}	90.94 (4)		
Se2 ⁱⁱ —W—Se1	83.91 (6)	Se1—W—W ^{iv}	139.40 (6)		
Sel ⁱ —W—Sel	78.52 (5)	Se1 ⁱⁱⁱ —W—W ^{iv}	137.07 (3)		
Se2 ⁱ —W—Se1 ⁱⁱⁱ	82.75 (6)	W ⁱⁱ —W—W ^{iv}	71.89 (3)		
Se2—W—Se1 ⁱⁱⁱ	82.75 (6)	W ^v —Se1—W	78.52 (5)		
Se2 ⁱⁱ —W—Se1 ⁱⁱⁱ	159.17 (6)	Wv—Se1—W ⁱⁱⁱ	100.00 (5)		
Se1 ⁱ —W—Se1 ⁱⁱⁱ	80.00 (5)	W-Se1-W ⁱⁱⁱ	100.00 (5)		
Se1—W—Se1 ⁱⁱⁱ	80.00 (5)	W—Se2—W ^v	81.88 (5)		
Se2 ⁱ —W—W ⁱⁱ	102.69 (4)	W—Se2—W ⁱⁱ	67.49 (5)		
Se2—W—W ⁱⁱ	56.66 (4)	Wv—Se2—W ⁱⁱ	67.49 (5)		

 Table S4. Selected bond distances (Å) and bond angles (°) for 2M WSe2

Symmetry codes: (i) *y*-1, *x*, *z*; (ii) -*y*+1, *x*-*y*+1, *z*; (iii) -*x*+*y*-1, -*x*, *z*; (iv) -*x*+*y*, -*x*+1, *z*; (v) -*y*, *x*-*y*+1, *z*; (vi) -*x*+*y*, -*x*, *z*; (vii) -*y*, *x*-*y*, *z*.

Figure S1. The scanning electron microscopy image of 2M WSe₂ crystals.

Fig S2. The micrograph of sample in contact with four electrodes inside the DAC

Figure S3 (a) temperature dependence of magnetization in the ZFC and FC modes for 2M WSe₂ under 8.1 GPa. (b) Magnetization vs magnetic field at 2K.

Figure S4. The pressure dependent temperature phase diagram of 2M WSe₂

Figure S5. Phonon calculation of 2M WSe₂ at 13.4 GPa.

Figure S6. The density of states (DOS) at the Fermi level calculated under pressure from 0 to 14GPa.