Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supporting Information

Solvent-controlled and solvent-responded strategies for synthesis of multiple-color carbon dots for pH sensing and cell imaging

Jianliang Bai[†], Yusha Ma[†], Guojun Yuan, Xu Chen, Jing Mei, Lu Zhang, Lili Ren*

School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China

*Corresponding author. E-mail address: liliren@seu.edu.cn (L. Ren).

[†]These authors contributed equally to this work.

The PL decay curves are analysed by fitting the following equation:

$$Y (t) = A1 \exp(-\tau/t_1) + A2 \exp(-\tau/t_2)$$
(1)

Here, A1 and A2 are the constants specifying the effect on the decay with lifetimes $\tau 1$ and $\tau 2$. The average lifetime can be evaluated using the following relation [1-2]:

$$\tau_{\rm avg} = (A1\tau 1^2 + A2\tau 2^2) / (A1\tau 1 + A2\tau 2)$$
(2)

[1] H. Ding, J.-S. Wei, P. Zhang, Z.-Y. Zhou, Q.-Y. Gao and H.-M. Xiong, *Small*, 2018, 14, 1800612.

[2] L. Ma, W. D. Xiang, H. H. Gao, L. Pei, X. Ma, X. Y. Huang and X. J. Liang J.Mater. Chem. C, 2015, 3, 6764-6770.

Fig. S1. Photographs of b-CDs and r-CDs dispersed in CH₃CH₂OH, in daylight (left)

and under UV irradiation (right).

Fig. S2. The UV-vis absorption (ABS) spectra of b-CDs and r-CDs.

Fig. S3. FT-IR spectra for b-CDs and r-CDs.

Fig. S4. The XPS spectra of the two selected samples (b-CDs and r-CDs).

Fig. S5. Raman spectra of b-CDs and r-CDs.

Fig. S6. The complete UV-vis absorption spectra of CDs in different solvents.

Fig. S7. The photo of the b-CDs in different solvents excited by 365 nm light.

Fig. S8. The UV-Vis absorption spectra of the r-CDs in methanol, ethanol, 1-propanol,1-butanol and 1-pentanol.

Fig. S9. The photos of the b-CDs (a) and r-CDs (b) in different pH $(1 \rightarrow 10)$ in daylight (left) or excited by 365 nm light (right).

Fig. S10. The photos of the r-CDs in different pH (2, 6, 7, 9) in daylight (left) or excited by 365 nm light (right).

Fig. S11. Cytotoxicity assessment of the b-CDs and r-CDs with the standard MTT assays toward HeLa cells.

Table S1. The C, N, and O element contents of the three selected products determined by XPS

results.

CDs	Size (nm)	C (at.%)	O (at.%)	N(at.%)
b-CDs	1.90	74.18	13.75	12.07
r-CDs	2.66	83.75	7.7	8.55

Table S2. The fluorescence lifetimes of b-CDs and r-CDs in CH₃CH₂OH.

CDs	τ1 (ns)	A1 (%)	τ2 (ns)	A2 (%)	$\tau_{avg}\left(ns\right)$	χ2
b-CDs	2.24	38.68	7.19	61.32	6.38	1.078
r-CDs	2.63	32.89	6.91	67.11	6.24	1.081