Electronic Supplementary Material (ESI) for Journal of Materials Chemistry C. This journal is © The Royal Society of Chemistry 2019

Supplementary Material

Rational design of thermally activated delayed fluorescence emitters with aggregation-induced emission employing combined charge transfer pathways for efficient non-doped OLEDs

Fulong Ma^a, Yu Cheng^a, Yu Zheng^a, Hefang Ji^a, Kamvan Hasrat^a, Zhengjian Qi^{a*}

^aJiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Chemistry and Chemical Engineering, Southeast

University, Nanjing, Jiangsu 211189, PR China

Contents

1.	Calculation of rate constants	2
2.	Photophysical properties	2
3.	X-ray crystallographic data	4
4.	Optimized molecular structures and the measured distance	5
5.	Cyclic voltammogram	5
6.	Device fabrication and characterization	6
7.	¹ H NMR and ¹³ C NMR spectra	.7
8.	LC-MS and MALDI-TOF spectra	12

1. Calculation of rate constants

$$k_{r, S} = \frac{\Phi_p}{\tau_p}$$
(1)
$$k_{nr, S} = k_{r, S} \left(\frac{1 - \Phi_{PL}}{\Phi_{PL}}\right)$$
(2)

$$k_{ISC} = k_{r, S} \left(\frac{1}{\Phi_p} - \frac{1}{\Phi_{PL}} \right)$$
(3)

$$k_{RISC} = \frac{\Phi_{PL}}{k_{r, S} \tau_p \tau_d} \tag{4}$$

$$\Phi_{p=} \frac{\overline{A_1 \tau_p}}{\overline{A_1 \tau_p + A_{21} \tau_d}} \Phi_{PL} \tag{5}$$

$$\Phi_{d} = \frac{A_2 \tau_d}{A_1 \tau_p + A_2 \tau_d} \Phi_{PL} \tag{6}$$

The rate constants were calculated according to above equation (1)-(6): Where τ_p and τ_d were the lifetimes of the prompt and delayed decay components, respectively. Φ_{PL} and Φ_p were the total PL quantum yield, prompt fluorescence and delayed fluorescence quantum yield, respectively. k_r , s, k_{nr} , s, k_{ISC} and k_{RISC} were the rate constant for fluorescence radiative transition, non-radiative transition, intersystem crossing (ISC) and reverse intersystem crossing (RISC) processes, respectively. A_1 and A_2 were the frequency factors according to the followed fitting model of transient

PL decay curves :
$$I(t) = A_1 \exp\left(-\frac{t_1}{\tau_p}\right) + A_2 \exp\left(-\frac{t_2}{\tau_d}\right)$$
.

2. Photophysical properties

Fig. S1 The UV-vis absorption spectra of of DTPA-DTM (a) and DTPA-DDTM (b) in different solvents at room temperature.

Table S1. Photophysical properties of DTPA-DTM and DTPA-DDTM in solvents with different polarity.

	DTPA-DTM			DTPA-DDTM			
Solvent	λ _{abs, max} (nm)	λ _{em, max} (nm)	Stokes shift (cm ⁻¹)	λ _{abs, max} (nm)	λ _{em, max} (nm)	Stokes shift (cm ⁻¹)	
Hex	349	445	6181	393	498	5364	
Tol	353	474	7231	405	533	5929	
Et ₂ O	348	471	7504	397	542	6738	
EA	347	494	8575	404	561	6927	
THF	349	497	8532	404	567	7115	
DCM	349	538	10065	405	605	8162	

Fig. S2 The transient PL decay spectra of DTPA-DTM (a) and DTPA-DDTM (b) in neat films under nitrogen at different temperatures.

Fig. S3 Phosphorescence spectra measured at 77 K in neat film states.

Fig. S4 Prompt and delayed (5 us) spectra of DTPA-DTM (a) and DTPA-DDTM (b) measured in toluene under nitrogen at room temperature.

3. X-ray crystallographic data

Table S2. Crystal data and structure refinement for DTPA-DDTM.

Empirical formula	$C_{68}H_{44}N_2O2S2$
CCDC No.	1915211
Temperature (K)	193(2)
Crystal system	Monoclinic
Space group	C 1 2/c 1
<i>a</i> (Å)	24.5727(13)
<i>b</i> (Å)	11.4734(5)
<i>c</i> (Å)	23.3323(11)
α (°)	90
eta (°)	98.189(2)
γ (°)	90
$V(Å^3)$	6511.1(5)
Ζ	4

4. Optimized molecular structures and the measured distance

Fig. S5 The optimized molecular structures and the distance measured by Gaussview 5.0 of DTPA-DTM (a) and DTPA-DDTM (b).

5. Cyclic voltammogram

Fig. S6 Cyclic voltammogram of DTPA-DTM and DTPA-DDTM.

6. Device fabrication and characterization

Fig. S7 The PL spectra of DTPA-DTM and DTPA-DDTM with different doping concentrations.

Fig. S8 The PL quantum yield of DTPA-DTM and DTPA-DDTM with different doping concentrations.

Fig. S9 (a) Energy diagram of the materials used in the doped devices; (b) normalized EL spectral; (c) current density-voltage-luminance (J-V-L) curves; (d) EQE versus luminance curves.

Fig. S10. CIE diagram of the devices based on DTPA-DTM and DTPA-DDTM.

1 8						
Compound	Conc ^a [wt%]	10	20	30	40	100
DTPA-DTM	$\lambda_{em^b}[nm]$	480	487	491	493	498
	$\phi_{F^{c}}[\%]$	39.5	41.9	42.5	39.2	38.6
DTPA-DDTM	$\lambda_{em^b}[nm]$	527	532	537	538	539
	$\phi_{F^{c}}$ [%]	61.3	63.9	65.2	62.3	60.5

 Table S3. Maximum emission peak and PLQYs of DTPA-DTM and DTPA-DDTM in mCP host with different doping concentrations.

^aDopant concentration in emitter:mCP codeposited thin films.

^bMaximum emission peak measured at 300 K.

 $^{c}\mbox{Absolute PL}$ quantum yield measured using an integrating sphere under N_{2} at 300 K.

7. ¹H NMR and ¹³C NMR spectra

-7000 -6000 -5000 -4000 -3000

¹³C-NMR spectrum of DBr-DDTM in CDCl₃

8. LC-MS and MALDI-TOF spectra

LC-MS spectrum of DTPA-DDTM in CH₃CN

MALDI-TOF spectrum of DTPA-DDTM in THF