Supporting information

High efficiency green TADF emitters of acridine donor and triazine acceptor D-A-D structure

Ramanaskanda Braveenth^{†,1}, Hyuna Lee ^{‡,1}, Sohyeon Kim[†], Kanthasamy Raagulan[†], Sunghoon Kim[†], Jang Hyuk Kwon^{‡,*} and Kyu Yun Chai^{†,*}

[†] Division of Bio-Nanochemistry, College of Natural Sciences, Wonkwang University, Iksan City, Chonbuk, 570-749, Republic of Korea. *E-mail: geuyoon@wonkwang.ac.kr;

[‡] Department of Information Display, Kyung Hee University, Dongdaemoon-gu, Seoul 130-701, Republic of Korea. *E-mail: jhkwon@khu.ac.kr

* Corresponding Authors: Email: jhkwon@khu.ac.kr; Tel.: +82-2-961-0948; Fax: +82-2-96 1-9154 (J.H. Kwon), Email: geuyoon@wonkwang.ac.kr; Tel.: +82-63-850-6230; Fax: +82-63-841-4893 (K.Y. Chai).

¹These authors contributed equally to this work

List of figures and tables

FIGURE S1. ¹ H NMR SPECTRA OF TRZ-DDPAC
FIGURE S2. ¹³ C NMR SPECTRA OF TRZ-DDPAC
FIGURE S3. ¹ H NMR SPECTRA OF TRZ-DDMAC
FIGURE S4. ¹³ C NMR SPECTRA OF TRZ-DDPAC
FIGURE S6. CYCLIC VOLTAMMETRY CURVE OF (A) TRZ-DDMAC, AND (B) TRZ-DDPAC
FIGURE S7. UV-VIS ABSORPTION AND PHOTOLUMINESCENCE SPECTRA (IN TOLUENE) OF (A) TRAIZINE, (B) DMAC, (C) DPAC, RESPECTIVELY.
FIGURE S8. SOLVATOCHROMIC EFFECT OF (A) TRZ-DDMAC AND (B) TRZ-DDPAC (C) DECREASING
PHOTOLUMINESCENCE INTENSITY OF TRZ-DDMAC WITH RESPECT TO POLARITY OF SOLVENTS
FIGURE S9. TRANSIENT PL DATA OF (A) TRZ-DDMAC AND (B) TRZ-DDPAC UNDER NITROGEN ATMOSPHERE 6
FIGURE S10. OLED DEVICE STRUCTURES BASED ON TADF EMITTERS AND DIFFERENT HOST MATERIALS7
FIGURE S11. (A) CURRENT DENSITY-VOLTAGE (J-V) AND LUMINESCENCE-VOLTAGE (L-V) CHARACTERISTICS, (B) EQE VERSUS LUMINANCE, (C) CURRENT EFFICIENCY VERSUS LUMINANCE, (D) POWER EFFICIENCY VERSUS
LUMINANCE, (E) ELECTRO LUMINANCE (EL) SPECTRA OF 20 wt% and 30 wt% of TRZ-DDPAC devices7
FIGURE S12. (A) CURRENT DENSITY-VOLTAGE (J-V) AND LUMINESCENCE-VOLTAGE (L-V) CHARACTERISTICS, (B) EQE VERSUS LUMINANCE, (C) CURRENT EFF ICIENCY VERSUS LUMINANCE, (D) POWER EFFICIENCY VERSUS LUMINANCE, (E) ELECTROLUMINANCE (EL) SPECTRA OF 10WT%, 20WT% AND 30WT% OF TRZ-DDMAC
DEVICES

TABLE S1. THE PLQY VALUE OF VARIOUS DOPING CONCENTRATION WITH DBFPO AND PPBI HOSTS.	8
TABLE S2. THE CALCULATED RATE CONSTANT VALUES OF TRZ-DDMAC WITH REPORTED METHOD ¹ .	8
TABLE S3. PROMPT AND DELAYED TIME OF TADF EMITTERS IN DIFFERENT SOLVENTS.	9
TABLE S4. DEVICE CHARACTERISTICS OF TRZ-DDPAC WITH DIFFERENT DOPING CONCENTRATION.	9
TABLE S5. DEVICE CHARACTERISTICS OF TRZ-DDMAC WITH DIFFERENT DOPING CONCENTRATION.	9

Figure S1. ¹H NMR spectra of TRZ-DDPAc.

Figure S2. ¹³C NMR spectra of TRZ-DDPAc.

Figure S3. ¹H NMR spectra of TRZ-DDMAc.

Figure S4. ¹³C NMR spectra of TRZ-DDPAc.

Figure S5. Differential scanning calorimetry (DSC) and thermo gravimetric analysis of both TADF emitters.

Figure S6. Cyclic voltammetry curve of (a) TRZ-DDMAc, and (b) TRZ-DDPAc.

Figure S7. UV-vis absorption and photoluminescence spectra (in Toluene) of (a) traizine, (b) DMAc, (c) DPAc, respectively.

Figure S8. Solvatochromic effect of (a) TRZ-DDMAc and (b) TRZ-DDPAc (c) decreasing photoluminescence intensity of TRZ-DDMAc with respect to polarity of solvents.

Figure S9. Transient PL data of (a) TRZ-DDMAc and (b) TRZ-DDPAc under nitrogen atmosphere.

Figure S10. OLED device structures based on TADF emitters and different host materials.

Figure S11. (a) Current density-voltage (J-V) and luminescence-voltage (L-V) characteristics, (b) EQE versus luminance, (c) current efficiency versus luminance, (d) power efficiency versus luminance, (e) Electro luminance (EL) spectra of 20wt% and 30wt% of TRZ-DDPAc devices.

Figure S12. (a) Current density-voltage (J-V) and luminescence-voltage (L-V) characteristics, (b) EQE versus luminance, (c) current eff iciency versus luminance, (d) power efficiency versus luminance, (e) Electroluminance (EL) spectra of 10wt%, 20wt% and 30wt% of TRZ-DDMAc devices.

Table S1. The PLQY value of various doping concentration with DBFPO and PPBI hosts.

	20wt% DBFPO	20wt% PPBI			
TRZ-DDMAc	47.95 %	52.73 %			
	30wt% DBFPO	30wt% PPBI			
TRZ-DDPAc	79.67%	74.45%			

Table S2. The calculated rate constant values of TRZ-DDMAc with reported method¹.

TADF emitter	$\Phi_{ ext{total}}^{a}$ (%)	Φ _p ^b (%)	Φ _d ^b (%)	τ_p^c (ns)	T _d ^c (µs)	$\begin{array}{c} k_p^{\ d} \\ (\times \ 10^7 \\ s^{-1}) \end{array}$	$\begin{array}{c} k_d^d \\ (\times \ 10^4 \\ s^{-1}) \end{array}$	$\begin{array}{c} k_{\rm ISC}{}^{\rm d} \\ (\times \ 10^7 \\ {\rm s}^{-1}) \end{array}$	$\begin{array}{c} k_{nr}^{Sd} \\ (\times 10^5 \\ s^{-1}) \end{array}$
TRZ- DDMAc ^e	47.9	15.2	32.7	38.9	8.01	2.57	12.5	1.76	42.4

^aAbsolute PLQYs measured doped film in the integral sphere, ^bThe prompt or delayed portion of total PLQY under N₂ atmosphere, ^cThe prompt and delayed exciton lifetimes of each molecule in doped films at 300 K under N₂ atmosphere, ^dThe rate constants of the prompt fluorescence decay, the delayed fluorescence decay, ISC, and non-radiative, ^eTRZ-DDMAc film was doped 20 % in DBFPO host.

Table S3. Prompt and delayed time of TADF emitters in different solvents.

TADF emitters	Prom	pt (ns) τ _p	Delayed (us)		
	Tol	MC	Tol	MC	
TRZ-DDMAc	56	11	2.92	1.79	
TRZ-DDPAc	39.2	25.8	5.08	1.29	

Table S4. Device characteristics of TRZ-DDPAc with different doping concentration.

Devices	Turn-on	Driving	Current	Power	External	(CIE color)
	voltage	voltage	efficiency	efficiency	quantum	
	at 1	(V)	(cd/A)	(lm/W)	efficiency	
	cd/m ²				(%)	
	(V)					
DBFPO:	3.5	5.8 ^b	60.9 ^a	51.1 ^a	27.0 ^a	(0.24, 0.50) ^c
20% TRZ-			45.2 ^b	23.7 ^b	201 ^b	
DDPAc						
DBFPO:	3.2	5.3 ^b	62.8 ^a	56.3 ^a	27.3 ^a	(0.25, 0.52) ^c
30% TRZ-			52.9 ^b	32.5 ^b	23.8 ^b	
DDPAc						

^aMaximum value, ^bMeasured at 1000 cd/m², ^cMeasured at 10 mA/cm².

Table S5. Device characteristics of TRZ-DDMAc with different doping concentration.

Devices	Turn-on voltage at 1 cd/m ² (V)	Driving voltage (V)	Current efficiency (cd/A)	Power efficiency (Im/W)	External quantum efficiency (%)	(CIE color)
PPBI :	3.4	5.7 ^b	40.2 ^a	35.1 ^a	16.6 ^a	(0.24, 0.50) ^c
10% TRZ-			30.0 ^b	16.3 ^b	12.3 ^b	
DDMAc						
PPBI :	3.2	5.0 ^b	43.2 ^a	33.7 ^a	17.6 ^a	$(0.26\ 0.54)^{\rm c}$
20% TRZ-			41.0 ^b	25.2 ^b	16.4 ^b	
DDMAc						
PPBI :	3.1	4.9 ^b	39.5 ^a	29.3 ^a	16.5 ^a	$(0.28 \ 0.56)^{\rm c}$
30% TRZ-			36.0 ^b	23.4 ^b	15.1 ^b	
DDMAc						

^aMaximum value, ^bMeasured at 1000 cd/m², ^cMeasured at 10 mA/cm².

Reference

 K.-C. Pan, S.-W. Li, Y.-Y. Ho, Y.-J. shiu, W.-L. Tsai, M. Jiao, W.-K. Lee, C.-C. Wu, C.-L. Chung, T. Chatterjee, Y.-S. Li, K.-T. Wong, H._C. Hu, C.-C. Chen and M.-T. Lee, *Advanced Functional Materials*, 2016, 26, 7560-7571.