A new type of solid-state luminescent 2-phenylbenzo[g]furo

[2,3-B]quinoxaline derivatives: synthesis, photophysical

characterization and transporting properties

Gang Wang, Jie Li, Yixiang Li, Dongdong Wang*, jingjing Zhang, Yong Wu, Yonggang Zhen*, Qingxin Tang, Hong Ma*, Wenping Hu, Zhaoxin Wu, and Alex K.-Y. Jen

Electronic Supplementary Information

Contents

Section 1: Computational details and Results of theoretical calculations	S1
Section 2: Supplementary Tables S1-2	S1
Section 3: Supplementary Figures S1-5	S2-3
Section 4: ¹ H NMR and ¹³ C NMR spectra	S4-6

Section 1: Computational details and Results of theoretical calculations

Singlet ground state (S₀) geometries of 3a were fully optimized by using M06 method of density functional theory (DFT). The standard 6-311G(d,p) basis set on non-metal atoms and the relativistic effective core potential (ECP) LANL2DZ on Ir atom were taken in our calculations. The solvent effects were evaluated with the self-consistent reaction field (SCRF) based on the integral equation formalism of the polarizable continuum model (IEFPCM) in CH₂Cl₂ solvent (ε =8.93). The vertical excitation calculations in CH₂Cl₂ for the simulation of absorption spectra were used by the time-dependent (TD) DFT method. To gain the features of emission processes of the 3a compounds, the first triplet state (T₁) geometries were located by the M05-2x functional combined with the same basis set as mentioned above. The suitability of M05-2x functional for the emission spectra of a series of iridium compounds has been well-documented.^{81, 52} Based on T₁ optimized structures, the single-point energy calculations were conducted at their S₀ states. In this way, the positions of the first phosphorescence bands of all iridium compounds were estimated by the S₀-T₁ gap of electronic energies including solvent effects. All calculations were carried out with the Gaussian 09 program package.^{S3}

Section 2: Supplementary Tables

Table S1. The photophysical data for 5a in different states, including maximum emission wavelength (nm), fluorescence quantum yields Φ_F , fluorescence lifetimes τ_F , and rate constants for radiative k_r , calculated via $\Phi_F = k_r \cdot \tau_F$.

	system		λ_{em}/nm	$\Phi_{\rm F}/$	$\tau_{\rm F}/$	$k_{\rm r}/$
				%	ns	ns-1
solution	CH ₂ Cl ₂		515	9.19	3.58	0.026
	THF		512	9.79	3.06	0.032
	doped in P	S film(1%)	505	9.28	2.78	0.033
Solid state	powders		597	22.14	11.39	0.019
	NPs in	THF:H ₂ O	545	19.73	10.37	0.019
	(1:1)					

Table S2 The semiconductor character data of 3a, 3b deposited on different substrate.

	Substrate	$\mu(cm^2 \cdot V^{\text{-}1} \cdot s^{\text{-}1})$	$V_T(V)$	I_{on}/I_{off}
3a	OTS	5.7×10 ⁻³	-26	1.4×10 ⁵
	SiO ₂	8.2×10 ⁻⁵	-33	1.5×10 ³
3b	OTS	1.1×10 ⁻⁴	-34	2.0×10 ³
	SiO ₂	3.6×10 ⁻⁵	-44	2.5×10 ²
5c	OTS	no mobility		

Section 3: Supplementary Figures S1-6

Fig. S2 UPS energy distribution curves of 3a-3c.

Fig. S3 (a) Transfer and (b) output curves of the field-effect transistors with 5b thin film deposited on OTS/SiO2/Si

Fig. S4 Optical micrographs of 3a crystals with PVD technology in different zone

Fig. S5 DSC curves of 3a-3c with the melting temperature and glass transition temperature indicated by arrows

Fig. S6 The calculated molecular length (blue line) of 5a-5c

twist angle: 0°

Fig. S7 The calculated contours of the HOMOs and LUMOs orbitals of 3a with twist angle of 0°

between the phenyl face and benzo [g] furo [2,3-B] quinoxaline

REFERENCE

- (S1) K. Swiderek, P. Paneth, J. Phys. Org. Chem., 2009, 22, 845.
- (S2) E. Baranoff, B. F. E. Curchod, F. Monti, et al. Inorg. Chem. 2012, 51, 799.

(S3) Gaussian 09, Revision B.02, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A.
Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M.
Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada,
M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H.
Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E.
Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell,
J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B.
Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin,
R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A.
Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V.

Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.