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Mathematical model 

 The results shown in fig. 2 demonstrate that two processes are primarily responsible for charging dynamics in organic 

electrochemical transistors. The two processes are ion currents in the dielectric and mixed ion-carrier diffusion in the organic 

semiconductor. These processes are coupled, ion-carrier pairs cannot diffuse into the organic semiconductor prior to the polarization of 

ions in the dielectric. We begin by specifying the problem in terms of two limiting cases. In the first case, the rate of ion-carrier diffusion is 

orders of magnitude faster than the movement of ions in the dielectric. In this case, the system can be modeled by considering only the 

behavior of the dielectric. It is common to use a stretched exponential function to model currents in a polymer electrolyte,1, 2 we therefore 

model the RC charging behavior using the following function: 

 𝑓(𝑡) = 𝐴0(1 − 𝑒𝑥𝑝[−(𝑘𝑅𝐶𝑡)𝛾])         (1) 

In eq. 1, 𝐴0 represents the charge carrier concentration at steady state, 𝑘𝑅𝐶 = (𝑅𝐶)−1 is the time constant of device charging from a simple 

RC circuit model and 𝛾 is a constant between 0 and 1 which is indicative of static and dynamic disorder in the ion conducting material.  

 In the second limiting case, the rate of ion polarization in the dielectric is orders of magnitude faster than the diffusion of ion-

carrier pairs in the semiconductor. In this case, we model the problem as a simple case of 1-D diffusion with a single diffusivity, 𝐷, that is 

constant both in time and in position. To solve the differential equation, we assume a constant boundary condition at the semiconductor-

dielectric interface and a no-flux boundary condition at the opposing side of the film. In our experiments, the opposing side of the film is in 

contact with a silicon substrate that is not being electrically addressed. We assume that it is impermeable to the ions. The solution to this 

problem is well known and is given in terms of a Fourier series.3 
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In eq. 2, 𝐴1 represents the steady state solution, a spatially uniform distribution of that value. Terms in the Fourier series are distinguished 

by 𝜆𝑛 = (2𝑛 − 1)𝜋/2 which is used in the calculation of the coefficients, 𝑐𝑛 along with the semiconductor film thickness, 𝐿. 
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In equation 3, ℎ(𝑥, 0) is the initial condition, the ion-carrier pair concentration at 𝑡 = 0. 

 Combining these two limiting cases into a single solution requires that the boundary condition at the dielectric-semiconductor 

interface changes with time as described by eq. 1. This stipulation makes the boundary conditions for the diffusion equation 

inhomogeneous. We chose to develop a solution numerically. The calculation begins by assuming that there are no ion-carrier pairs 

throughout the semiconductor at 𝑡 = 0. It is likely that trapped charges linger from a previous charge/discharge cycle, but in our data 

analysis, we subtract out any signal from trapped charge, causing ℎ(𝑥, 0) = 0 for the experiment as well as the simulation.  

 In the first time step, which we will call 𝑡1, we set 𝐴1 = 𝑓(𝑡1) and solve for 𝑔(𝑥, Δ𝑡1) where Δ𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 is the time variable 

that is input into equation 3 during each step of the numerical solution. During the calculation for the next time step, we set 𝐴1 = 𝑓(𝑡2) 

and calculate the Fourier coefficients using the previous solution as our initial condition. In symbols, we set ℎ(𝑥, 𝑡2) = 𝑔(𝑥, Δ𝑡1) during our 

calculation of 𝑐𝑛 for the second step of the time series. This process is repeated, always using the previous solution as the initial conditions 

for the next time step. Because of the iterative nature of the solution, convergence is not guaranteed. However, choosing sufficiently fine 

time samples at short timescales aids in obtaining convergence for rapidly varying components and choosing sufficiently fine spatial 

sampling aids in obtaining convergence for slowly varying components.  
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