$Cs_2AgBiBr_{6-x}Cl_x$ solid solutions – Band gap engineering with halide double perovskites

Matthew B. Gray, Eric T. McClure, and Patrick M. Woodward

Supporting Information

Figures:

Fig. S1 - Rietveld refined PXRD pattern of $Cs_2AgBiBr_3Cl_3$ in the Fm^3m space group, tick marks signify the positions of the allowed *hkl* reflections.

Fig. S2 Diffuse reflectance spectroscopy (DRS) data for the solid solution series, Cs₂AgBiBr_{6-x}Cl_x.

Fig. S3 Energy of the direct $Bi^{3+} 6s^2 \rightarrow 6s^{1}6p^{1}$ transition absorption maximum, obtained from the Kubelka-Munk (KM) transformation of the DRS data as a function of chloride content.

Tables:

Table S1 Gaussian microstrain broadening for $Cs_2AgBiBr_{6-x}Cl_x$ samples as a function of the Cl⁻ content, and goodness of fit parameters from Rietveld refinements with and without strain, and crystallite size broadening.

Table S2 Comparison of nominal Cl⁻ content and occupational and thermal values obtained from refinement of the anion site occupancies obtained from Rietveld refinements.

Table S3 Energies of the indirect band gap and absorption maximum of the localized $Bi^{3+} 6s^2 \rightarrow 6s^16p^1$ transition as a function of Cl⁻ content in Cs₂AgBiBr_{6-x}Br_x samples.

Fig. S1 Rietveld refined PXRD pattern of $Cs_2AgBiBr_3Cl_3$ in the Fm^3m space group, tick marks signify the positions of the allowed *hkl* reflections.

Fig. S2 Diffuse reflectance spectroscopy (DRS) data for the solid solution series, Cs₂AgBiBr_{6-x}Cl_x.

Table S1 Gaussian microstrain broadening for $Cs_2AgBiBr_{6-x}Cl_x$ samples as a function of the Cl⁻ content, and goodness of fit parameters from Rietveld refinements with and without strain and crystallite size broadening.

	x = 0	x = 1	x = 2	x = 3	x = 4	x = 5	x = 6
Gaussian microstrain	0.004(3)	0.128(3)	0.301(5)	0.502(4)	0.612(3)	0.701(2)	0.067(1)
R _{wp} no strain	6.473	21.884	30.363	32.092	32.078	35.982	11.952
R _{wp} strain	6.475	17.086	17.632	10.688	8.208	7.476	6.024
R _{wp} strain and size	6.524	17.092	17.619	10.669	8.017	7.441	6.057

Strain analysis was conducted using the Rietveld method, within TOPAS-Academic (Version 6). To account for instrumental broadening, the Cs₂AgBiBr₆ end-member was fit (this sample had the sharpest peaks). The values for the axial term, "Simple_Axial_Model" and the TCHZ peak shape parameters of the remaining samples were fixed at the values obtained for the Cs₂AgBiBr₆ refinement. Initial Rietveld refinements were conducted, using locked occupancies, atomic positions, and sample height from the freely refined analysis of the solid solutions. These R_{wp} values are reported in Table S1, in the "R_{wp} no strain" row. Then, the strain macros, "e0_from_Strain," was added to the refinement to determine the amount of Gaussian and Lorentzian strain in the system. These R_{wp} values are reported in Table S1, in the "R_{wp} strain" row. In all cases, the Gaussian strain was at least an of magnitude larger than the Lorentzian strain; therefore, it was determined that microstrain caused by localized anion disorder was the primary cause of peak broadening.² The final row of Table S1 gives the R_{wp} values obtained when both Gaussian strain and crystallite size effects were used to model the peak shapes. The similarity of the last two rows of Table S1 shows that the broadening due to crystallite size effects is minimal and can be neglected.

The occupancy of the anion site was refined in all samples, with the restraint that the $Cl^- + Br^-$ occupancy adds up to 1. The results are given in Table S2. In general, the refined occupancies were with a few percent of the nominal occupancies.

Nominal Percent Cl	Refined Percent Cl	Halide B _{eq}
0 %	0.0(2) %	3.45(4)
16.7 %	17(1) %	3.81(7)
33.3 %	31(1) %	3.43(9)
50.0 %	53.5(7) %	3.69(6)
66.7 %	70.6(5) %	3.51(7)
83.3 %	87.7(5) %	3.60(4)
100 %	100.0(4) %	3.47(4)

Table S2 Comparison of nominal Cl⁻ content and values obtained from refinement of the anion site occupancies obtained from Rietveld refinements.

Fig. S3 Energy of the direct $Bi^{3+} 6s^2 \rightarrow 6s^16p^1$ transition absorption maximum, obtained from the Kubelka-Munk (KM) transformation of the DRS data as a function of chloride content. Error bars are smaller than the symbols used to plot the data.

Table S3 Energies of the indirect band gap and absorption maximum of the localized $Bi^{3+} 6s^2 \rightarrow 6s^{1}6p^{1-1}$
transition as a function of Cl ⁻ content in $Cs_2AgBiBr_{6-x}Br_x$ samples.

Nominal Percent Cl	Band Gap (eV)	Local $6s^2 \rightarrow 6s^16p^1$ (eV)
0.00 %	2.20(1)	2.91(2)
16.67 %	2.27(2)	3.00(1)
33.33 %	2.34(1)	3.08(1)
50.00 %	2.41(1)	3.19(1)
66.67 %	2.51(1)	3.28(2)
83.33 %	2.60(2)	3.37(1)
100.00 %	2.77(1)	3.42(1)

References

- 1. Topas-Academic (Version 6), General Profile and Structural Analysis for Powder Diffraction Data; Bruker AXS: Karlsruhe, Germany, 2004.
- 2. Balzar et. al., J. Appl. Cryst. 2004, 37, 911.