Remarkable Lifetime Improvement of Quantumdot Light Emitting Diodes by Incorporating Rubidium Carbonate in Metal-Oxide Electron Transport Layer

Yujin Lee, Hyo-Min Kim, Jeonggi Kim and Jin Jang^{*}

*Department of Information Display and Advanced Display Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea

KEYWORDS: Efficiency roll-off, Lifetime, Metal oxide, Quantum-dot, QLED, Rubidium carbonate, Solution process

Conductivity calculation from I-V characteristics of EODs

To calculate the conductivity of MZO, the electron only devices (EODs) were fabricated with the following structure: ITO/Al (2 nm)/pristine MZO or Rb_2CO_3 :MZO (~ 45 nm)/Liq (1.5 nm)/Al (100 nm). From the ohmic region in the I-V characteristics of EODs, where the slope of current against voltage is 1, the resistivity of the MZO is obtained.

Figure S1. XPS spectra of pristine MZO and 4% Rb_2CO_3 doped MZO thin-films. The XPS intensities plotted as a function of binding energy for (a) O1s, (b) Rb3d, (c) Mg1s, (d) C1s and (e) Zn2p core levels.

Core Level								
Rb ₂ CO ₃ doping concentration		O1s			Rb3d		Mg1s	
		O _H	0 _v	О _м	Rb3d _{3/2}	Rb3d _{5/2}	Mg	MgO
0%		2.4	63.3	34.3	-		54.8	45.2
4%	Area (%)	3.4	79.8	16.8	50.35	68.1	31.9	67.7
Core Level								
Rb ₂ CO ₂ doping		C1s				Zn2p		
concentration		M-CO ₃	O-C=0	C	С-О-С	C-C	Zn2p _{1/2}	Zn2p _{3/2}
0%	Area (9/)	-	22.5		7.8	69.7	32.2	67.8
4%	Ared (%)	8.4	26.5		5.1	60	32.3	67.7

Table S1. Summarized peak area for Rb3d, C1s, Zn2p, Mg1s and O1s core levels in pristine MZO and 4% Rb_2CO_3 doped MZO thin-films obtained from XPS results.

Figure S2. Optical absorptions and PL intensities of SDR-, DR-, R-, G- and DB-QD solutions.

Table S2. Summarized material information for SDR-, DR-, R-, G- and DB-QDs used in thisstudy.

Color	Composition	d _{avr} (nm)	PL _{peak} (nm)	FWHM (nm)	QY(%)
Super deep-red (SDR-)	CdZnSeS/ZnS	10	679	38	88
Deep-red (DR-)	CdZnSeS/ZnS	13	644	31	77
Red (R-)	CdZnSeS/ZnS	10	620	26	91
Green (G-)	CdZnSeS/ZnS	9	527	34	91
Deep-blue (DB-)	CdS/ZnS	7	447	19	76

Figure S3. I-V characteristic of hole only device (HOD). Structure: ITO/ PEDOT:PSS:WOx(40 nm)/ R-QDs (20nm)/ TCTA (10nm)/ NPB(20nm) / HAT-CN(20nm) / Al(100nm)

Table S3. Summarized current efficiencies at 30k cd/m ² and maximum luminances of R-QLED
reported in literatures.

EL _{peak} (nm)	Device Structure	CE (cd/A, @ L=30k cd/m²)	L _{max} (cd/m²)	Ref.
640	ITO/AZO/R-QDs/TCTA/NPB/HAT-CN/AI	~2.7	31,030	(1)
612	ITO/PEDOT:PSS/TFB/F4TCNQ/R-QDs/ZnO/Al	~8	76,000	(2)
630	ITO/ZnO/R-QDs/Firpic:TCTA/NPB/HAT-CN/AI	~4.7	47,400	(3)
620	ITO/PEDOT:PSS/PVK/R-QDs/Ga:ZnO/Al	~13	~44,000	(4)
620	ITO/PEDOT:PSS/TFB/R-QDs/MZO/AI	~7	36,685	(5)
~630	ITO/ZnO:CsN ₃ /R-QDs/TAPC/HAT-CN/MoO ₃ / Al	~5.5	~ 30,000	(6)
622	ITO/ZnO:Cs ₂ CO ₃ /R-QDs/Poly-TPD/PEDOT:PSS/ AI	~4.8	75,444	(7)
620	ITO/LZO/Rb2CO3:MZO/TCTA/NPB/HAT-CN/AI	13.2	129,100	This work

year	color	Device Structure		L _{int} (cd/m²)	Lifetime (T ₉₀ , hr)	Ref.
2016	Red	ITO/ZnO/QDs/Firpic:TCTA/NPB/Al	630	100	~6	(3)
2018	Red	ITO/ZnO NPs/Cs2CO3/QDs/NPB/HAT-CN/AI	620	100	~1,000	(8)
This study	Red			100	~14,400	This
			020	1,000	~465	work

Table S4. Summarized lifetime characteristics of inverted R-QLEDs reported in literatures.

REFERENCES

- 1 Kim, H. M.; Bin Mohd Yusoff, A. R.; Youn, J. H.; Jang, J. Inverted Quantum-Dot Light Emitting Diodes with Cesium Carbonate Doped Aluminium-Zinc-Oxide as the Cathode Buffer Layer for High Brightness. *J. Mater. Chem. C* 2013, **1**, 3924–3930.
- 2 Nam, S.; Oh, N.; Zhai, Y.; Shim, M. High Efficiency and Optical Anisotropy in Double-Heterojunction Nanorod Light-Emitting Diodes. *ACS Nano* 2015, **9**, 878–885.
- Liu, G.; Zhou, X.; Sun, X.; Chen, S. Performance of Inverted Quantum Dot Light-Emitting
 Diodes Enhanced by Using Phosphorescent Molecules as Exciton Harvesters. J. Phys.
 Chem. C 2016, 120, 4667–4672.
- 4 Cao, S.; Zheng, J.; Zhao, J.; Yang, Z.; Li, C.; Guan, X.; Yang, W.; Shang, M.; Wu, T. Enhancing the Performance of Quantum Dot Light-Emitting Diodes Using Room-Temperature-Processed Ga-Doped ZnO Nanoparticles as the Electron Transport Layer. *ACS Appl. Mater. Interfaces* 2017, **9**, 15605–15614.
- 5 Wang, S.; Guo, Y.; Feng, D.; Chen, L.; Fang, Y.; Shen, H.; Du, Z. Bandgap Tunable Zn₁₋ _xMg_xO Thin Films as Electron Transport Layers for High Performance Quantum Dot Light-Emitting Diodes. *J. Mater. Chem. C* 2017, **5**, 4724–4730.

- Pan, J.; Wei, C.; Wang, L.; Zhuang, J.; Huang, Q.; Su, W.; Cui, Z.; Nathan, A.; Lei, W.;
 Chen, J. Boosting the Efficiency of Inverted Quantum Dot Light-Emitting Diodes by
 Balancing Charge Densities and Suppressing Exciton Quenching through Band
 Alignment. *Nanoscale* 2018, **10**, 592–602.
- 7 Triana, M. A.; Chen, H.; Zhang, D.; Camargo, R. J.; Zhai, T.; Duhm, S.; Dong, Y. Bright Inverted Quantum-Dot Light-Emitting Diodes by All-Solution Processing. *J. Mater. Chem. C* 2018, **6**, 7487–7492.
- Hyvonen, J.; Titov, A.; Ying, C. Y.; Holloway, P. H.; Acharya, K. P. 73-2: Invited Paper:
 High-Performance Quantum Dot Light Emitting Diodes and Their Challenges. *SID Symp. Dig. Tech. Pap.* 2018, **49**, 969–972