Supporting Information

A facile strategy for the synthesis of water-soluble fluorescent nonconjugated polymer dots and their applications in tetracyclines detection

Yang Chen,^{a,*} Yang Zhang,^{a,†} Tiantian Lyu,^{a,†} Ying Wang,^a Xudong Yang,^b and Xiaodan Wu^a

^aCollege of Science, Northeast Forestry University, Harbin 150040, P. R. China
^bSchool of Chemical Engineering, Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, P. R. China
[†]these authors contributed equally to this work

*Corresponding author:

Dr. Yang Chen

E-mail: ychen@nefu.edu.cn

Fig. S1 Fluorescence decay curve of the PEI-AA NCPdots ($\lambda_{ex} = 365 \text{ nm}$, $\lambda_{em} = 485 \text{ nm}$, $\chi^2 = 1.140$). The fractional weights of τ_1 and τ_2 are 39.33% and 60.67%, respectively. The intensity-weighted average lifetime was 6.90 ns, which was calculated according to the literature reported procedures.^[S1, S2]

	Market Street and
The second second	States - Barris

Fig. S2 Photographs of PVA film under visible light (left) and 365 nm UV light illumination (right).

Fig. S3 FT-IR spectra of (a) the PEI-AA NCPdots and (b) PEI.

Fig. S4 ¹H-NMR spectra of the PEI-AA NCPdots (a) and PEI (c) in D_2O . (b) and (d) are partial expansion of ¹H-NMR spectra of (a) and (c), respectively.

Fig. S5 GPC curves of PEI and PEI-AA NCPdots based on the RI signal (a) and the UV-Vis signal at 360 nm (b).

Fig. S6 Thermogravimetric curve (black) and derivative thermogravimetric curve (red) of the PEI-AA NCPdots.

Fig. S7 Fluorescence emission spectra of the PEI-AA NCPdots prepared from commercial hyperbranched PEI with different molecular weight.

Fig. S8 (a) Fluorescence emission spectra of prepared at different pH value ($\lambda_{ex} = 360$ nm). (b) The corresponding photographs of the PEI-AA NCPdots solutions under daylight lamp.

Fig. S9 (a) Fluorescence emission and (b) UV-vis spectra of the PEI-AA NCPdots and PEI solution, respectively.

Fig. S10 Fluorescence emission spectra of fresh prepared PEI-AA NCPdots (black line) and after storaged under umbient condions for 6 months (red line).

Fig. S11 UV-vis absorption spectra of TC (blue line) and fluorescence spectra of the PEI-AA NCPdots (black and red line).

Fig. S12 Fluorescence decay curves of the PEI-AA NCPdots before and after adding different amount of TC.

Sample	TC spiked	TC founded	RSD (%, n=3)	Recovery (%)
1	90 nM	88.5 nM	4.20	98.33
2	2.1 µM	2.015 μM	3.12	95.95
3	8.1 µM	8.133 μM	6.39	100.41

Table S1 Detection of TC in milk samples.

 Table S2 Detection of TC in environmental water samples.

Sample	TC spiked	TC founded	RSD (%, n=3)	Recovery (%)
1	90 nM	90.7 nM	3.05	100.78
2	2.1 µM	2.038 μM	5.23	97.05
3	8.1 µM	8.014 µM	4.66	98.94

References:

[S1] J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed., Springer, New York 2006.

[S2] Y. Chen, H. Zhou, Y. Wang, W. Li, J. Chen, Q. Lin, C. Yu, Chem. Commun.,2013, 49, 9821-9823.